|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2sb6 | Structured version Visualization version GIF version | ||
| Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 2sb6 | ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb6 2084 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑)) | |
| 2 | 19.21v 1938 | . . . 4 ⊢ (∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑)) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | |
| 3 | impexp 450 | . . . . 5 ⊢ (((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ (𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | |
| 4 | 3 | albii 1818 | . . . 4 ⊢ (∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑) ↔ ∀𝑦(𝑥 = 𝑧 → (𝑦 = 𝑤 → 𝜑))) | 
| 5 | sb6 2084 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑤 → 𝜑)) | |
| 6 | 5 | imbi2i 336 | . . . 4 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜑))) | 
| 7 | 2, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 8 | 7 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| 9 | 1, 8 | bitri 275 | 1 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 | 
| This theorem is referenced by: sbcom2 2172 2exsb 2362 2eu6 2656 | 
| Copyright terms: Public domain | W3C validator |