MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb2a Structured version   Visualization version   GIF version

Theorem hbsb2a 2487
Description: Special case of a bound-variable hypothesis builder for substitution. Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 2-Feb-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hbsb2a ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem hbsb2a
StepHypRef Expression
1 sb4a 2483 . 2 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
2 sb2 2479 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
32axc4i 2321 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑)
41, 3syl 17 1 ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-12 2175  ax-13 2371
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-sb 2071
This theorem is referenced by:  hbsb3  2490  bj-hbsb3t  34707
  Copyright terms: Public domain W3C validator