Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb5f | Structured version Visualization version GIF version |
Description: Equivalence for substitution when 𝑦 is not free in 𝜑. The implication "to the right" is sb1 2493 and does not require the non-freeness hypothesis. Theorem sb5 2274 replaces the non-freeness hypothesis with a disjoint variable condition and uses less axioms. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb6f.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb5f | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6f.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb6f 2516 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
3 | 1 | equs45f 2472 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
4 | 2, 3 | bitr4i 281 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-10 2143 ax-12 2176 ax-13 2380 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: sb7f 2546 |
Copyright terms: Public domain | W3C validator |