![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb7f | Structured version Visualization version GIF version |
Description: This version of dfsb7 2283 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1909, i.e., that does not have the concept of a variable not occurring in a formula. (Definition dfsb1 2489 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb7f.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sb7f | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb7f.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | sb5f 2506 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) |
3 | 2 | sbbii 2076 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) |
4 | 1 | sbco2 2519 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
5 | sb5 2277 | . 2 ⊢ ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
6 | 3, 4, 5 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sb7h 2534 |
Copyright terms: Public domain | W3C validator |