MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb7f Structured version   Visualization version   GIF version

Theorem sb7f 2525
Description: This version of dfsb7 2281 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1911, i.e., that does not have the concept of a variable not occurring in a formula. (Definition dfsb1 2481 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb7f.1 𝑧𝜑
Assertion
Ref Expression
sb7f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7f
StepHypRef Expression
1 sb7f.1 . . . 4 𝑧𝜑
21sb5f 2498 . . 3 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧𝜑))
32sbbii 2079 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑))
41sbco2 2511 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
5 sb5 2278 . 2 ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
63, 4, 53bitr3i 301 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  sb7h  2526
  Copyright terms: Public domain W3C validator