MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb6x Structured version   Visualization version   GIF version

Theorem sb6x 2464
Description: Equivalence involving substitution for a variable not free. Usage of this theorem is discouraged because it depends on ax-13 2372. Usage of sb6 2089 is preferred, which requires fewer axioms. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb6x.1 𝑥𝜑
Assertion
Ref Expression
sb6x ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb6x
StepHypRef Expression
1 sb6x.1 . . 3 𝑥𝜑
21sbf 2266 . 2 ([𝑦 / 𝑥]𝜑𝜑)
3 biidd 261 . . 3 (𝑥 = 𝑦 → (𝜑𝜑))
41, 3equsal 2417 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
52, 4bitr4i 277 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator