MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ5 Structured version   Visualization version   GIF version

Theorem sbequ5 2473
Description: Substitution does not change an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 15-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbequ5 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 2441 . 2 𝑧𝑥 𝑥 = 𝑦
21sbf 2272 1 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator