MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ5 Structured version   Visualization version   GIF version

Theorem sbequ5 2465
Description: Substitution does not change an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbequ5 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ5
StepHypRef Expression
1 nfae 2433 . 2 𝑧𝑥 𝑥 = 𝑦
21sbf 2263 1 ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator