![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb9i | Structured version Visualization version GIF version |
Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) |
Ref | Expression |
---|---|
sb9i | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb9 2485 | . 2 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | |
2 | 1 | biimpi 208 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1505 [wsb 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |