MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb9i Structured version   Visualization version   GIF version

Theorem sb9i 2518
Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.)
Assertion
Ref Expression
sb9i (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb9i
StepHypRef Expression
1 sb9 2517 . 2 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
21biimpi 215 1 (∀𝑥[𝑥 / 𝑦]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator