MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhb Structured version   Visualization version   GIF version

Theorem sbhb 2523
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝜑". Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 29-May-2009.) (New usage is discouraged.)
Assertion
Ref Expression
sbhb ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbhb
StepHypRef Expression
1 nfv 1915 . . . 4 𝑦𝜑
21sb8 2519 . . 3 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
32imbi2i 336 . 2 ((𝜑 → ∀𝑥𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑))
4 19.21v 1940 . 2 (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑))
53, 4bitr4i 278 1 ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-11 2152  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator