Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbhb | Structured version Visualization version GIF version |
Description: Two ways of expressing "𝑥 is (effectively) not free in 𝜑". Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 29-May-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbhb | ⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sb8 2522 | . . 3 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
3 | 2 | imbi2i 335 | . 2 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
4 | 19.21v 1945 | . 2 ⊢ (∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑) ↔ (𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜑 → [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-11 2157 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |