| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb9 | Structured version Visualization version GIF version | ||
| Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 5-Aug-1993.) Allow a shortening of sb9i 2525. (Revised by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb9 | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12a 2254 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 2 | 1 | equcoms 2019 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 3 | 2 | sps 2185 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 4 | 3 | dral1 2444 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 5 | nfnae 2439 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 6 | nfnae 2439 | . . 3 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 7 | nfsb2 2488 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦[𝑥 / 𝑦]𝜑) | |
| 8 | 7 | naecoms 2434 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦[𝑥 / 𝑦]𝜑) |
| 9 | nfsb2 2488 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | |
| 10 | 2 | a1i 11 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
| 11 | 5, 6, 8, 9, 10 | cbv2 2408 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 12 | 4, 11 | pm2.61i 182 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sb9i 2525 |
| Copyright terms: Public domain | W3C validator |