MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb9 Structured version   Visualization version   GIF version

Theorem sb9 2523
Description: Commutation of quantification and substitution variables. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 5-Aug-1993.) Allow a shortening of sb9i 2524. (Revised by Wolf Lammen, 15-Jun-2019.) (New usage is discouraged.)
Assertion
Ref Expression
sb9 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb9
StepHypRef Expression
1 sbequ12a 2250 . . . . 5 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
21equcoms 2024 . . . 4 (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
32sps 2180 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43dral1 2439 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
5 nfnae 2434 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
6 nfnae 2434 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
7 nfsb2 2487 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦[𝑥 / 𝑦]𝜑)
87naecoms 2429 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦[𝑥 / 𝑦]𝜑)
9 nfsb2 2487 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
102a1i 11 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)))
115, 6, 8, 9, 10cbv2 2403 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
124, 11pm2.61i 182 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sb9i  2524
  Copyright terms: Public domain W3C validator