Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbanvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sban 2085 as of 24-Jul-2023. Substitution distributes over conjunction. Version of sban 2085 with a disjoint variable condition, not requiring ax-13 2379. (Contributed by Wolf Lammen, 18-Jan-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbanvOLD | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2283 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑦 / 𝑥](𝜑 → ¬ 𝜓)) | |
2 | sbimvOLD 2318 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓)) | |
3 | sbn 2283 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
4 | 3 | imbi2i 339 | . . . 4 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
5 | 2, 4 | bitri 278 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
6 | 1, 5 | xchbinx 337 | . 2 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
7 | df-an 400 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
8 | 7 | sbbii 2081 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓)) |
9 | df-an 400 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) | |
10 | 6, 8, 9 | 3bitr4i 306 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-sb 2070 |
This theorem is referenced by: sbbivOLD 2320 |
Copyright terms: Public domain | W3C validator |