MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbanvOLD Structured version   Visualization version   GIF version

Theorem sbanvOLD 2320
Description: Obsolete version of sban 2079 as of 24-Jul-2023. Substitution distributes over conjunction. Version of sban 2079 with a disjoint variable condition, not requiring ax-13 2385. (Contributed by Wolf Lammen, 18-Jan-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbanvOLD ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbanvOLD
StepHypRef Expression
1 sbn 2281 . . 3 ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑦 / 𝑥](𝜑 → ¬ 𝜓))
2 sbimvOLD 2319 . . . 4 ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓))
3 sbn 2281 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓)
43imbi2i 337 . . . 4 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
52, 4bitri 276 . . 3 ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
61, 5xchbinx 335 . 2 ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
7 df-an 397 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
87sbbii 2074 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓))
9 df-an 397 . 2 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓))
106, 8, 93bitr4i 304 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-nf 1778  df-sb 2063
This theorem is referenced by:  sbbivOLD  2321
  Copyright terms: Public domain W3C validator