| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbn | Structured version Visualization version GIF version | ||
| Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2065. (Revised by BJ, 25-Dec-2020.) |
| Ref | Expression |
|---|---|
| sbn | ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2065 | . 2 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) | |
| 2 | alinexa 1843 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 3 | 2 | imbi2i 336 | . . 3 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
| 5 | alinexa 1843 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 6 | dfsb7 2279 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 7 | 5, 6 | xchbinxr 335 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ [𝑡 / 𝑥]𝜑) |
| 8 | 1, 4, 7 | 3bitri 297 | 1 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbex 2281 sbi2 2302 sbor 2307 sbcng 3836 difab 4310 difopab 5840 wl-sb8eft 37552 wl-sb8et 37554 pm13.196a 44433 ichn 47443 |
| Copyright terms: Public domain | W3C validator |