Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbn | Structured version Visualization version GIF version |
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2068. (Revised by BJ, 25-Dec-2020.) |
Ref | Expression |
---|---|
sbn | ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 2068 | . 2 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑))) | |
2 | alinexa 1845 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | 2 | imbi2i 336 | . . 3 ⊢ ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
4 | 3 | albii 1822 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) |
5 | alinexa 1845 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
6 | dfsb7 2276 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
7 | 5, 6 | xchbinxr 335 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) ↔ ¬ [𝑡 / 𝑥]𝜑) |
8 | 1, 4, 7 | 3bitri 297 | 1 ⊢ ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: sbex 2278 sbi2 2299 sbor 2304 sbcng 3766 difab 4234 wl-sb8et 35708 pm13.196a 42032 ichn 44908 |
Copyright terms: Public domain | W3C validator |