MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbn Structured version   Visualization version   GIF version

Theorem sbn 2279
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) Revise df-sb 2064. (Revised by BJ, 25-Dec-2020.)
Assertion
Ref Expression
sbn ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)

Proof of Theorem sbn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sb 2064 . 2 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)))
2 alinexa 1842 . . . 4 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
32imbi2i 336 . . 3 ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ (𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
43albii 1818 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → ¬ 𝜑)) ↔ ∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)))
5 alinexa 1842 . . 3 (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
6 dfsb7 2278 . . 3 ([𝑡 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝑡 ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
75, 6xchbinxr 335 . 2 (∀𝑦(𝑦 = 𝑡 → ¬ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ ¬ [𝑡 / 𝑥]𝜑)
81, 4, 73bitri 297 1 ([𝑡 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑡 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537  wex 1778  [wsb 2063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-sb 2064
This theorem is referenced by:  sbex  2280  sbi2  2301  sbor  2306  sbcng  3818  difab  4290  difopab  5820  wl-sb8eft  37527  wl-sb8et  37529  pm13.196a  44405  ichn  47416
  Copyright terms: Public domain W3C validator