Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc7 Structured version   Visualization version   GIF version

Theorem sbc7 3754
 Description: An equivalence for class substitution in the spirit of df-clab 2780. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbc7 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem sbc7
StepHypRef Expression
1 sbccow 3746 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
2 sbc5 3751 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
31, 2bitr3i 280 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781  [wsbc 3723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-v 3446  df-sbc 3724 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator