Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc7 | Structured version Visualization version GIF version |
Description: An equivalence for class substitution in the spirit of df-clab 2718. Note that 𝑥 and 𝐴 don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbc7 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbccow 3743 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
2 | sbc5 3748 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 [wsbc 3720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-sbc 3721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |