MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsbcw Structured version   Visualization version   GIF version

Theorem cbvsbcw 3803
Description: Change bound variables in a wff substitution. Version of cbvsbc 3805 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Jeff Hankins, 19-Sep-2009.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvsbcw.1 𝑦𝜑
cbvsbcw.2 𝑥𝜓
cbvsbcw.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbcw ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvsbcw
StepHypRef Expression
1 cbvsbcw.1 . . . 4 𝑦𝜑
2 cbvsbcw.2 . . . 4 𝑥𝜓
3 cbvsbcw.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvabw 2805 . . 3 {𝑥𝜑} = {𝑦𝜓}
54eleq2i 2825 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑦𝜓})
6 df-sbc 3771 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
7 df-sbc 3771 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
85, 6, 73bitr4i 303 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1782  wcel 2107  {cab 2712  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-sbc 3771
This theorem is referenced by:  cbvcsbw  3889
  Copyright terms: Public domain W3C validator