| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvsbcw | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a wff substitution. Version of cbvsbc 3805 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Jeff Hankins, 19-Sep-2009.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvsbcw.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvsbcw.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvsbcw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvsbcw | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbcw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvsbcw.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvabw 2805 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 5 | 4 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 6 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 7 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1782 ∈ wcel 2107 {cab 2712 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3771 |
| This theorem is referenced by: cbvcsbw 3889 |
| Copyright terms: Public domain | W3C validator |