MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccow Structured version   Visualization version   GIF version

Theorem sbccow 3788
Description: A composition law for class substitution. Version of sbcco 3791 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.)
Assertion
Ref Expression
sbccow ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)

Proof of Theorem sbccow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3775 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑𝐴 ∈ V)
2 sbcex 3775 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 dfsbcq 3767 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑦][𝑦 / 𝑥]𝜑))
4 dfsbcq 3767 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5 sbsbc 3769 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
65sbbii 2076 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
7 sbco2vv 2099 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
8 sbsbc 3769 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
96, 7, 83bitr3ri 302 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
10 sbsbc 3769 . . . 4 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
119, 10bitri 275 . . 3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
123, 4, 11vtoclbg 3536 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
131, 2, 12pm5.21nii 378 1 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064  wcel 2108  Vcvv 3459  [wsbc 3765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-sbc 3766
This theorem is referenced by:  sbc7  3797  sbccom  3846  sbcralt  3847  csbcow  3889  2nreu  4419  bnj62  34751  bnj610  34778  bnj976  34808  bnj1468  34877  sbccom2  38149  sbccom2f  38150  aomclem6  43083
  Copyright terms: Public domain W3C validator