MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccow Structured version   Visualization version   GIF version

Theorem sbccow 3744
Description: A composition law for class substitution. Version of sbcco 3747 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
sbccow ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)

Proof of Theorem sbccow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3731 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑𝐴 ∈ V)
2 sbcex 3731 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 dfsbcq 3723 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑦][𝑦 / 𝑥]𝜑))
4 dfsbcq 3723 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5 sbsbc 3725 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
65sbbii 2077 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
7 sbco2vv 2098 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
8 sbsbc 3725 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
96, 7, 83bitr3ri 302 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
10 sbsbc 3725 . . . 4 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
119, 10bitri 275 . . 3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
123, 4, 11vtoclbg 3512 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
131, 2, 12pm5.21nii 380 1 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2065  wcel 2104  Vcvv 3437  [wsbc 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-sbc 3722
This theorem is referenced by:  sbc7  3754  sbccom  3809  sbcralt  3810  csbcow  3852  2nreu  4381  bnj62  32748  bnj610  32776  bnj976  32806  bnj1468  32875  sbccom2  36331  sbccom2f  36332  aomclem6  41080
  Copyright terms: Public domain W3C validator