| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbccow | Structured version Visualization version GIF version | ||
| Description: A composition law for class substitution. Version of sbcco 3762 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| sbccow | ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3746 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3746 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 3 | dfsbcq 3738 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝜑)) | |
| 4 | dfsbcq 3738 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 5 | sbsbc 3740 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 6 | 5 | sbbii 2079 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
| 7 | sbco2vv 2102 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 8 | sbsbc 3740 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
| 9 | 6, 7, 8 | 3bitr3ri 302 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 10 | sbsbc 3740 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 12 | 3, 4, 11 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 13 | 1, 2, 12 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 |
| This theorem is referenced by: sbc7 3768 sbccom 3817 sbcralt 3818 csbcow 3860 2nreu 4389 bnj62 34724 bnj610 34751 bnj976 34781 bnj1468 34850 sbccom2 38165 sbccom2f 38166 aomclem6 43092 |
| Copyright terms: Public domain | W3C validator |