![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbccow | Structured version Visualization version GIF version |
Description: A composition law for class substitution. Version of sbcco 3801 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) Avoid ax-13 2366. (Revised by GG, 10-Jan-2024.) |
Ref | Expression |
---|---|
sbccow | ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3785 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3785 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
3 | dfsbcq 3777 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝜑)) | |
4 | dfsbcq 3777 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | sbsbc 3779 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
6 | 5 | sbbii 2072 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
7 | sbco2vv 2093 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
8 | sbsbc 3779 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
9 | 6, 7, 8 | 3bitr3ri 301 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
10 | sbsbc 3779 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
11 | 9, 10 | bitri 274 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
12 | 3, 4, 11 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
13 | 1, 2, 12 | pm5.21nii 377 | 1 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2060 ∈ wcel 2099 Vcvv 3462 [wsbc 3775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-sbc 3776 |
This theorem is referenced by: sbc7 3808 sbccom 3863 sbcralt 3864 csbcow 3906 2nreu 4438 bnj62 34578 bnj610 34605 bnj976 34635 bnj1468 34704 sbccom2 37839 sbccom2f 37840 aomclem6 42757 |
Copyright terms: Public domain | W3C validator |