MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccow Structured version   Visualization version   GIF version

Theorem sbccow 3742
Description: A composition law for class substitution. Version of sbcco 3745 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 26-Sep-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
sbccow ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)

Proof of Theorem sbccow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3729 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑𝐴 ∈ V)
2 sbcex 3729 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 dfsbcq 3721 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑦][𝑦 / 𝑥]𝜑))
4 dfsbcq 3721 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5 sbsbc 3723 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
65sbbii 2082 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
7 sbco2vv 2103 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
8 sbsbc 3723 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
96, 7, 83bitr3ri 301 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
10 sbsbc 3723 . . . 4 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
119, 10bitri 274 . . 3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
123, 4, 11vtoclbg 3505 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
131, 2, 12pm5.21nii 379 1 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2070  wcel 2109  Vcvv 3430  [wsbc 3719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-sbc 3720
This theorem is referenced by:  sbc7  3752  sbccom  3808  sbcralt  3809  csbcow  3851  2nreu  4380  bnj62  32678  bnj610  32706  bnj976  32736  bnj1468  32805  sbccom2  36262  sbccom2f  36263  aomclem6  40864
  Copyright terms: Public domain W3C validator