MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbi2 Structured version   Visualization version   GIF version

Theorem sbcbi2 3783
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024.)
Assertion
Ref Expression
sbcbi2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi1 2808 . . 3 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
2 eleq2 2829 . . 3 ({𝑥𝜑} = {𝑥𝜓} → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
31, 2syl 17 . 2 (∀𝑥(𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
4 df-sbc 3721 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
5 df-sbc 3721 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
63, 4, 53bitr4g 314 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  wcel 2110  {cab 2717  [wsbc 3720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-sbc 3721
This theorem is referenced by:  csbeq2  3842
  Copyright terms: Public domain W3C validator