Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbi2 | Structured version Visualization version GIF version |
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024.) |
Ref | Expression |
---|---|
sbcbi2 | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi1 2808 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | |
2 | eleq2 2828 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜓})) |
4 | df-sbc 3713 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
5 | df-sbc 3713 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
6 | 3, 4, 5 | 3bitr4g 317 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 = wceq 1543 ∈ wcel 2112 {cab 2716 [wsbc 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-sbc 3713 |
This theorem is referenced by: csbeq2 3834 |
Copyright terms: Public domain | W3C validator |