MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbi2 Structured version   Visualization version   GIF version

Theorem sbcbi2 3816
Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024.)
Assertion
Ref Expression
sbcbi2 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2
StepHypRef Expression
1 abbi1 2887 . . 3 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
2 eleq2 2904 . . 3 ({𝑥𝜑} = {𝑥𝜓} → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
31, 2syl 17 . 2 (∀𝑥(𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜓}))
4 df-sbc 3759 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
5 df-sbc 3759 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
63, 4, 53bitr4g 317 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2115  {cab 2802  [wsbc 3758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-sbc 3759
This theorem is referenced by:  csbeq2  3871
  Copyright terms: Public domain W3C validator