| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbi1 | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over biconditional. One direction of sbcbig 3788 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcbi1 | ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3746 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcbig 3788 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| 4 | 1, 3 | mpcom 38 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 |
| This theorem is referenced by: dfconngr1 30160 |
| Copyright terms: Public domain | W3C validator |