MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel21v Structured version   Visualization version   GIF version

Theorem sbcel21v 3794
Description: Class substitution into a membership relation. One direction of sbcel2gv 3793 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 3730 . 2 ([𝐵 / 𝑥]𝐴𝑥𝐵 ∈ V)
2 sbcel2gv 3793 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
32biimpd 228 . 2 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
41, 3mpcom 38 1 ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3431  [wsbc 3720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-sbc 3721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator