MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel21v Structured version   Visualization version   GIF version

Theorem sbcel21v 3809
Description: Class substitution into a membership relation. One direction of sbcel2gv 3808 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 3751 . 2 ([𝐵 / 𝑥]𝐴𝑥𝐵 ∈ V)
2 sbcel2gv 3808 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
32biimpd 229 . 2 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
41, 3mpcom 38 1 ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator