| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3745 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3459 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 Vcvv 3438 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-sbc 3745 |
| This theorem is referenced by: sbccow 3767 sbcco 3770 sbc5ALT 3773 sbcan 3794 sbcor 3795 sbcn1 3797 sbcim1 3798 sbcbi1 3802 sbcal 3804 sbcex2 3805 sbcel1v 3810 sbcel21v 3812 sbccomlem 3823 sbcrext 3827 sbcreu 3830 spesbc 3836 csbprc 4362 sbcel12 4364 sbcne12 4368 sbcel2 4371 sbccsb2 4390 sbcbr123 5149 opelopabsb 5477 csbopab 5502 csbxp 5723 csbiota 6479 csbriota 7325 fi1uzind 14432 bj-csbprc 36886 sbccomieg 42769 |
| Copyright terms: Public domain | W3C validator |