Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3727 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3459 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {cab 2714 Vcvv 3441 [wsbc 3726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-sbc 3727 |
This theorem is referenced by: sbccow 3749 sbcco 3752 sbc5ALT 3755 sbcan 3778 sbcor 3779 sbcn1 3781 sbcim1 3782 sbcim1OLD 3783 sbcbi1 3787 sbcal 3790 sbcex2 3791 sbcel1v 3797 sbcel21v 3799 sbcimdvOLD 3801 sbcrext 3816 sbcreu 3819 spesbc 3825 csbprc 4351 sbcel12 4353 sbcne12 4357 sbcel2 4360 sbccsb2 4379 sbcbr123 5141 opelopabsb 5463 csbopab 5488 csbxp 5705 csbiota 6459 csbriota 7290 fi1uzind 14290 bj-csbprc 35168 sbccomieg 40831 |
Copyright terms: Public domain | W3C validator |