| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3766 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3480 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {cab 2713 Vcvv 3459 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 |
| This theorem is referenced by: sbccow 3788 sbcco 3791 sbc5ALT 3794 sbcan 3815 sbcor 3816 sbcn1 3818 sbcim1 3819 sbcbi1 3823 sbcal 3825 sbcex2 3826 sbcel1v 3831 sbcel21v 3833 sbccomlem 3844 sbcrext 3848 sbcreu 3851 spesbc 3857 csbprc 4384 sbcel12 4386 sbcne12 4390 sbcel2 4393 sbccsb2 4412 sbcbr123 5173 opelopabsb 5505 csbopab 5530 csbxp 5754 csbiota 6524 csbriota 7377 fi1uzind 14525 bj-csbprc 36928 sbccomieg 42816 |
| Copyright terms: Public domain | W3C validator |