| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3738 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3458 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {cab 2711 Vcvv 3437 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sbc 3738 |
| This theorem is referenced by: sbccow 3760 sbcco 3763 sbc5ALT 3766 sbcan 3787 sbcor 3788 sbcn1 3790 sbcim1 3791 sbcbi1 3795 sbcal 3797 sbcex2 3798 sbcel1v 3803 sbcel21v 3805 sbccomlem 3816 sbcrext 3820 sbcreu 3823 spesbc 3829 csbprc 4358 sbcel12 4360 sbcne12 4364 sbcel2 4367 sbccsb2 4386 sbcbr123 5149 opelopabsb 5475 csbopab 5500 csbxp 5722 csbiota 6481 csbriota 7326 fi1uzind 14418 bj-csbprc 36977 sbccomieg 42913 |
| Copyright terms: Public domain | W3C validator |