| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3742 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3457 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 Vcvv 3436 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3742 |
| This theorem is referenced by: sbccow 3764 sbcco 3767 sbc5ALT 3770 sbcan 3791 sbcor 3792 sbcn1 3794 sbcim1 3795 sbcbi1 3799 sbcal 3801 sbcex2 3802 sbcel1v 3807 sbcel21v 3809 sbccomlem 3820 sbcrext 3824 sbcreu 3827 spesbc 3833 csbprc 4359 sbcel12 4361 sbcne12 4365 sbcel2 4368 sbccsb2 4387 sbcbr123 5145 opelopabsb 5470 csbopab 5495 csbxp 5716 csbiota 6474 csbriota 7318 fi1uzind 14414 bj-csbprc 36950 sbccomieg 42832 |
| Copyright terms: Public domain | W3C validator |