| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3754 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3468 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 Vcvv 3447 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sbc 3754 |
| This theorem is referenced by: sbccow 3776 sbcco 3779 sbc5ALT 3782 sbcan 3803 sbcor 3804 sbcn1 3806 sbcim1 3807 sbcbi1 3811 sbcal 3813 sbcex2 3814 sbcel1v 3819 sbcel21v 3821 sbccomlem 3832 sbcrext 3836 sbcreu 3839 spesbc 3845 csbprc 4372 sbcel12 4374 sbcne12 4378 sbcel2 4381 sbccsb2 4400 sbcbr123 5161 opelopabsb 5490 csbopab 5515 csbxp 5738 csbiota 6504 csbriota 7359 fi1uzind 14472 bj-csbprc 36898 sbccomieg 42781 |
| Copyright terms: Public domain | W3C validator |