![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3791 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3498 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {cab 2711 Vcvv 3477 [wsbc 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-sbc 3791 |
This theorem is referenced by: sbccow 3813 sbcco 3816 sbc5ALT 3819 sbcan 3843 sbcor 3844 sbcn1 3846 sbcim1 3847 sbcim1OLD 3848 sbcbi1 3852 sbcal 3854 sbcex2 3855 sbcel1v 3861 sbcel21v 3863 sbcimdvOLD 3865 sbccomlem 3877 sbcrext 3881 sbcreu 3884 spesbc 3890 csbprc 4414 sbcel12 4416 sbcne12 4420 sbcel2 4423 sbccsb2 4442 sbcbr123 5201 opelopabsb 5539 csbopab 5564 csbxp 5787 csbiota 6555 csbriota 7402 fi1uzind 14542 bj-csbprc 36892 sbccomieg 42780 |
Copyright terms: Public domain | W3C validator |