Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3720 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3448 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 {cab 2716 Vcvv 3430 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sbc 3720 |
This theorem is referenced by: sbccow 3742 sbcco 3745 sbc5ALT 3748 sbcan 3771 sbcor 3772 sbcn1 3774 sbcim1 3775 sbcim1OLD 3776 sbcbi1 3781 sbcal 3784 sbcex2 3785 sbcel1v 3791 sbcel21v 3793 sbcimdvOLD 3795 sbcrext 3810 sbcreu 3813 spesbc 3819 csbprc 4345 sbcel12 4347 sbcne12 4351 sbcel2 4354 sbccsb2 4373 sbcbr123 5132 opelopabsb 5444 csbopab 5469 csbxp 5684 csbiota 6423 csbriota 7241 fi1uzind 14192 bj-csbprc 35074 sbccomieg 40595 |
Copyright terms: Public domain | W3C validator |