![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3779 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3493 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {cab 2710 Vcvv 3475 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-sbc 3779 |
This theorem is referenced by: sbccow 3801 sbcco 3804 sbc5ALT 3807 sbcan 3830 sbcor 3831 sbcn1 3833 sbcim1 3834 sbcim1OLD 3835 sbcbi1 3839 sbcal 3842 sbcex2 3843 sbcel1v 3849 sbcel21v 3851 sbcimdvOLD 3853 sbcrext 3868 sbcreu 3871 spesbc 3877 csbprc 4407 sbcel12 4409 sbcne12 4413 sbcel2 4416 sbccsb2 4435 sbcbr123 5203 opelopabsb 5531 csbopab 5556 csbxp 5776 csbiota 6537 csbriota 7381 fi1uzind 14458 bj-csbprc 35790 sbccomieg 41531 |
Copyright terms: Public domain | W3C validator |