| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version | ||
| Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3757 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | elex 3471 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 |
| This theorem is referenced by: sbccow 3779 sbcco 3782 sbc5ALT 3785 sbcan 3806 sbcor 3807 sbcn1 3809 sbcim1 3810 sbcbi1 3814 sbcal 3816 sbcex2 3817 sbcel1v 3822 sbcel21v 3824 sbccomlem 3835 sbcrext 3839 sbcreu 3842 spesbc 3848 csbprc 4375 sbcel12 4377 sbcne12 4381 sbcel2 4384 sbccsb2 4403 sbcbr123 5164 opelopabsb 5493 csbopab 5518 csbxp 5741 csbiota 6507 csbriota 7362 fi1uzind 14479 bj-csbprc 36905 sbccomieg 42788 |
| Copyright terms: Public domain | W3C validator |