Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3722 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3455 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 {cab 2713 Vcvv 3437 [wsbc 3721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-sbc 3722 |
This theorem is referenced by: sbccow 3744 sbcco 3747 sbc5ALT 3750 sbcan 3773 sbcor 3774 sbcn1 3776 sbcim1 3777 sbcim1OLD 3778 sbcbi1 3782 sbcal 3785 sbcex2 3786 sbcel1v 3792 sbcel21v 3794 sbcimdvOLD 3796 sbcrext 3811 sbcreu 3814 spesbc 3820 csbprc 4346 sbcel12 4348 sbcne12 4352 sbcel2 4355 sbccsb2 4374 sbcbr123 5135 opelopabsb 5456 csbopab 5481 csbxp 5697 csbiota 6451 csbriota 7280 fi1uzind 14260 bj-csbprc 35143 sbccomieg 40810 |
Copyright terms: Public domain | W3C validator |