MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcex Structured version   Visualization version   GIF version

Theorem sbcex 3729
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcex ([𝐴 / 𝑥]𝜑𝐴 ∈ V)

Proof of Theorem sbcex
StepHypRef Expression
1 df-sbc 3720 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 elex 3448 . 2 (𝐴 ∈ {𝑥𝜑} → 𝐴 ∈ V)
31, 2sylbi 216 1 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2716  Vcvv 3430  [wsbc 3719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-sbc 3720
This theorem is referenced by:  sbccow  3742  sbcco  3745  sbc5ALT  3748  sbcan  3771  sbcor  3772  sbcn1  3774  sbcim1  3775  sbcim1OLD  3776  sbcbi1  3781  sbcal  3784  sbcex2  3785  sbcel1v  3791  sbcel21v  3793  sbcimdvOLD  3795  sbcrext  3810  sbcreu  3813  spesbc  3819  csbprc  4345  sbcel12  4347  sbcne12  4351  sbcel2  4354  sbccsb2  4373  sbcbr123  5132  opelopabsb  5444  csbopab  5469  csbxp  5684  csbiota  6423  csbriota  7241  fi1uzind  14192  bj-csbprc  35074  sbccomieg  40595
  Copyright terms: Public domain W3C validator