![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex | Structured version Visualization version GIF version |
Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcex | ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3805 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | elex 3509 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2717 Vcvv 3488 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 |
This theorem is referenced by: sbccow 3827 sbcco 3830 sbc5ALT 3833 sbcan 3857 sbcor 3858 sbcn1 3860 sbcim1 3861 sbcim1OLD 3862 sbcbi1 3866 sbcal 3868 sbcex2 3869 sbcel1v 3875 sbcel21v 3877 sbcimdvOLD 3879 sbccomlem 3891 sbcrext 3895 sbcreu 3898 spesbc 3904 csbprc 4432 sbcel12 4434 sbcne12 4438 sbcel2 4441 sbccsb2 4460 sbcbr123 5220 opelopabsb 5549 csbopab 5574 csbxp 5799 csbiota 6566 csbriota 7420 fi1uzind 14556 bj-csbprc 36876 sbccomieg 42749 |
Copyright terms: Public domain | W3C validator |