MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2gv Structured version   Visualization version   GIF version

Theorem sbcel2gv 3784
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2gv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . 2 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2 eleq2 2827 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
31, 2sbcie2g 3753 1 (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  sbcel21v  3785  csbvarg  4362  bnj92  32742  bnj539  32771  frege77  41437  sbcoreleleq  42044  trsbc  42049  onfrALTlem5  42051  sbcoreleleqVD  42368  trsbcVD  42386  onfrALTlem5VD  42394
  Copyright terms: Public domain W3C validator