Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2gv Structured version   Visualization version   GIF version

Theorem sbcel2gv 3819
 Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2gv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2899 . 2 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2 eleq2 2899 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
31, 2sbcie2g 3791 1 (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∈ wcel 2114  [wsbc 3752 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-sbc 3753 This theorem is referenced by:  sbcel21v  3820  csbvarg  4359  bnj92  32142  bnj539  32171  frege77  40421  sbcoreleleq  41024  trsbc  41029  onfrALTlem5  41031  sbcoreleleqVD  41348  trsbcVD  41366  onfrALTlem5VD  41374
 Copyright terms: Public domain W3C validator