MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2gv Structured version   Visualization version   GIF version

Theorem sbcel2gv 3823
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcel2gv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2818 . 2 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
2 eleq2 2818 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
31, 2sbcie2g 3797 1 (𝐵𝑉 → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757
This theorem is referenced by:  sbcel21v  3824  csbvarg  4400  bnj92  34859  bnj539  34888  minregex  43530  frege77  43936  sbcoreleleq  44532  trsbc  44537  onfrALTlem5  44539  sbcoreleleqVD  44855  trsbcVD  44873  onfrALTlem5VD  44881  modelaxreplem3  44977
  Copyright terms: Public domain W3C validator