| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3800 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: eqsbc2 3808 sbc3an 3809 sbccomlemOLD 3824 sbccom 3825 sbcrext 3827 sbcabel 3832 csbcow 3868 csbco 3869 sbcnel12g 4367 sbcne12 4368 csbcom 4373 csbnestgfw 4375 csbnestgf 4380 sbccsb 4389 sbccsb2 4390 csbab 4393 2nreu 4397 sbcssg 4473 sbcop 5436 sbcrel 5728 sbcfung 6510 tfinds2 7804 frpoins3xpg 8080 frpoins3xp3g 8081 mpoxopovel 8160 f1od2 32677 bnj62 34689 bnj89 34690 bnj156 34697 bnj524 34706 bnj610 34716 bnj919 34736 bnj976 34746 bnj110 34827 bnj91 34830 bnj92 34831 bnj106 34837 bnj121 34839 bnj124 34840 bnj125 34841 bnj126 34842 bnj130 34843 bnj154 34847 bnj155 34848 bnj153 34849 bnj207 34850 bnj523 34856 bnj526 34857 bnj539 34860 bnj540 34861 bnj581 34877 bnj591 34880 bnj609 34886 bnj611 34887 bnj934 34904 bnj1000 34910 bnj984 34921 bnj985v 34922 bnj985 34923 bnj1040 34941 bnj1123 34955 bnj1452 35021 bnj1463 35024 sbcalf 38096 sbcexf 38097 sbccom2lem 38106 sbccom2 38107 sbccom2f 38108 sbccom2fi 38109 csbcom2fi 38110 rspcsbnea 42107 2sbcrex 42760 2sbcrexOLD 42762 sbcrot3 42767 sbcrot5 42768 2rexfrabdioph 42772 3rexfrabdioph 42773 4rexfrabdioph 42774 6rexfrabdioph 42775 7rexfrabdioph 42776 rmydioph 42990 expdiophlem2 42998 sbcheg 43755 sbc3or 44509 trsbc 44517 onfrALTlem5 44519 eqsbc2VD 44816 sbcoreleleqVD 44835 onfrALTlem5VD 44861 ich2exprop 47459 |
| Copyright terms: Public domain | W3C validator |