Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3752 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1546 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊤wtru 1540 [wsbc 3697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-sbc 3698 |
This theorem is referenced by: eqsbc3r 3762 sbc3an 3763 sbccomlem 3777 sbccom 3778 sbcrext 3780 sbcabel 3785 csbcow 3821 csbco 3822 sbcnel12g 4309 sbcne12 4310 csbcom 4315 csbnestgfw 4317 csbnestgf 4322 sbccsb 4331 sbccsb2 4332 csbab 4335 2nreu 4339 sbcssg 4417 sbcop 5349 sbcrel 5625 difopab 5672 sbcfung 6360 tfinds2 7578 mpoxopovel 7897 f1od2 30573 bnj62 32211 bnj89 32212 bnj156 32219 bnj524 32229 bnj610 32239 bnj919 32259 bnj976 32270 bnj110 32351 bnj91 32354 bnj92 32355 bnj106 32361 bnj121 32363 bnj124 32364 bnj125 32365 bnj126 32366 bnj130 32367 bnj154 32371 bnj155 32372 bnj153 32373 bnj207 32374 bnj523 32380 bnj526 32381 bnj539 32384 bnj540 32385 bnj581 32401 bnj591 32404 bnj609 32410 bnj611 32411 bnj934 32428 bnj1000 32434 bnj984 32445 bnj985v 32446 bnj985 32447 bnj1040 32465 bnj1123 32479 bnj1452 32545 bnj1463 32548 frpoins3xpg 33325 frpoins3xp3g 33326 sbcalf 35825 sbcexf 35826 sbccom2lem 35835 sbccom2 35836 sbccom2f 35837 sbccom2fi 35838 csbcom2fi 35839 2sbcrex 40091 2sbcrexOLD 40093 sbcrot3 40098 sbcrot5 40099 2rexfrabdioph 40103 3rexfrabdioph 40104 4rexfrabdioph 40105 6rexfrabdioph 40106 7rexfrabdioph 40107 rmydioph 40321 expdiophlem2 40329 sbcheg 40846 sbc3or 41604 trsbc 41612 onfrALTlem5 41614 eqsbc3rVD 41912 sbcoreleleqVD 41931 onfrALTlem5VD 41957 ich2exprop 44349 |
Copyright terms: Public domain | W3C validator |