Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3770 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1546 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: eqsbc2 3781 sbc3an 3782 sbccomlem 3799 sbccom 3800 sbcrext 3802 sbcabel 3807 csbcow 3843 csbco 3844 sbcnel12g 4342 sbcne12 4343 csbcom 4348 csbnestgfw 4350 csbnestgf 4355 sbccsb 4364 sbccsb2 4365 csbab 4368 2nreu 4372 sbcssg 4451 sbcop 5397 sbcrel 5681 difopab 5729 sbcfung 6442 tfinds2 7685 mpoxopovel 8007 f1od2 30958 bnj62 32599 bnj89 32600 bnj156 32607 bnj524 32617 bnj610 32627 bnj919 32647 bnj976 32657 bnj110 32738 bnj91 32741 bnj92 32742 bnj106 32748 bnj121 32750 bnj124 32751 bnj125 32752 bnj126 32753 bnj130 32754 bnj154 32758 bnj155 32759 bnj153 32760 bnj207 32761 bnj523 32767 bnj526 32768 bnj539 32771 bnj540 32772 bnj581 32788 bnj591 32791 bnj609 32797 bnj611 32798 bnj934 32815 bnj1000 32821 bnj984 32832 bnj985v 32833 bnj985 32834 bnj1040 32852 bnj1123 32866 bnj1452 32932 bnj1463 32935 frpoins3xpg 33714 frpoins3xp3g 33715 sbcalf 36199 sbcexf 36200 sbccom2lem 36209 sbccom2 36210 sbccom2f 36211 sbccom2fi 36212 csbcom2fi 36213 2sbcrex 40522 2sbcrexOLD 40524 sbcrot3 40529 sbcrot5 40530 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 rmydioph 40752 expdiophlem2 40760 sbcheg 41276 sbc3or 42041 trsbc 42049 onfrALTlem5 42051 eqsbc2VD 42349 sbcoreleleqVD 42368 onfrALTlem5VD 42394 ich2exprop 44811 |
Copyright terms: Public domain | W3C validator |