Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3790 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1548 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1542 [wsbc 3731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-sbc 3732 |
This theorem is referenced by: eqsbc2 3800 sbc3an 3801 sbccomlem 3818 sbccom 3819 sbcrext 3821 sbcabel 3826 csbcow 3862 csbco 3863 sbcnel12g 4363 sbcne12 4364 csbcom 4369 csbnestgfw 4371 csbnestgf 4376 sbccsb 4385 sbccsb2 4386 csbab 4389 2nreu 4393 sbcssg 4473 sbcop 5438 sbcrel 5727 difopabOLD 5778 sbcfung 6513 tfinds2 7783 mpoxopovel 8111 f1od2 31341 bnj62 32997 bnj89 32998 bnj156 33005 bnj524 33014 bnj610 33024 bnj919 33044 bnj976 33054 bnj110 33135 bnj91 33138 bnj92 33139 bnj106 33145 bnj121 33147 bnj124 33148 bnj125 33149 bnj126 33150 bnj130 33151 bnj154 33155 bnj155 33156 bnj153 33157 bnj207 33158 bnj523 33164 bnj526 33165 bnj539 33168 bnj540 33169 bnj581 33185 bnj591 33188 bnj609 33194 bnj611 33195 bnj934 33212 bnj1000 33218 bnj984 33229 bnj985v 33230 bnj985 33231 bnj1040 33249 bnj1123 33263 bnj1452 33329 bnj1463 33332 frpoins3xpg 34069 frpoins3xp3g 34070 sbcalf 36426 sbcexf 36427 sbccom2lem 36436 sbccom2 36437 sbccom2f 36438 sbccom2fi 36439 csbcom2fi 36440 2sbcrex 40917 2sbcrexOLD 40919 sbcrot3 40924 sbcrot5 40925 2rexfrabdioph 40929 3rexfrabdioph 40930 4rexfrabdioph 40931 6rexfrabdioph 40932 7rexfrabdioph 40933 rmydioph 41148 expdiophlem2 41156 sbcheg 41758 sbc3or 42523 trsbc 42531 onfrALTlem5 42533 eqsbc2VD 42831 sbcoreleleqVD 42850 onfrALTlem5VD 42876 ich2exprop 45339 |
Copyright terms: Public domain | W3C validator |