| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3793 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1548 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1542 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: eqsbc2 3801 sbc3an 3802 sbccomlemOLD 3817 sbccom 3818 sbcrext 3820 sbcabel 3825 csbcow 3861 csbco 3862 sbcnel12g 4363 sbcne12 4364 csbcom 4369 csbnestgfw 4371 csbnestgf 4376 sbccsb 4385 sbccsb2 4386 csbab 4389 2nreu 4393 sbcssg 4471 sbcop 5434 sbcrel 5727 sbcfung 6512 tfinds2 7802 frpoins3xpg 8078 frpoins3xp3g 8079 mpoxopovel 8158 f1od2 32708 bnj62 34755 bnj89 34756 bnj156 34763 bnj524 34772 bnj610 34782 bnj919 34802 bnj976 34812 bnj110 34893 bnj91 34896 bnj92 34897 bnj106 34903 bnj121 34905 bnj124 34906 bnj125 34907 bnj126 34908 bnj130 34909 bnj154 34913 bnj155 34914 bnj153 34915 bnj207 34916 bnj523 34922 bnj526 34923 bnj539 34926 bnj540 34927 bnj581 34943 bnj591 34946 bnj609 34952 bnj611 34953 bnj934 34970 bnj1000 34976 bnj984 34987 bnj985v 34988 bnj985 34989 bnj1040 35007 bnj1123 35021 bnj1452 35087 bnj1463 35090 sbcalf 38177 sbcexf 38178 sbccom2lem 38187 sbccom2 38188 sbccom2f 38189 sbccom2fi 38190 csbcom2fi 38191 rspcsbnea 42247 2sbcrex 42904 2sbcrexOLD 42906 sbcrot3 42911 sbcrot5 42912 2rexfrabdioph 42916 3rexfrabdioph 42917 4rexfrabdioph 42918 6rexfrabdioph 42919 7rexfrabdioph 42920 rmydioph 43134 expdiophlem2 43142 sbcheg 43899 sbc3or 44652 trsbc 44660 onfrALTlem5 44662 eqsbc2VD 44959 sbcoreleleqVD 44978 onfrALTlem5VD 45004 ich2exprop 47598 |
| Copyright terms: Public domain | W3C validator |