| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3809 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: eqsbc2 3817 sbc3an 3818 sbccomlemOLD 3833 sbccom 3834 sbcrext 3836 sbcabel 3841 csbcow 3877 csbco 3878 sbcnel12g 4377 sbcne12 4378 csbcom 4383 csbnestgfw 4385 csbnestgf 4390 sbccsb 4399 sbccsb2 4400 csbab 4403 2nreu 4407 sbcssg 4483 sbcop 5449 sbcrel 5743 difopabOLD 5794 sbcfung 6540 tfinds2 7840 frpoins3xpg 8119 frpoins3xp3g 8120 mpoxopovel 8199 f1od2 32644 bnj62 34710 bnj89 34711 bnj156 34718 bnj524 34727 bnj610 34737 bnj919 34757 bnj976 34767 bnj110 34848 bnj91 34851 bnj92 34852 bnj106 34858 bnj121 34860 bnj124 34861 bnj125 34862 bnj126 34863 bnj130 34864 bnj154 34868 bnj155 34869 bnj153 34870 bnj207 34871 bnj523 34877 bnj526 34878 bnj539 34881 bnj540 34882 bnj581 34898 bnj591 34901 bnj609 34907 bnj611 34908 bnj934 34925 bnj1000 34931 bnj984 34942 bnj985v 34943 bnj985 34944 bnj1040 34962 bnj1123 34976 bnj1452 35042 bnj1463 35045 sbcalf 38108 sbcexf 38109 sbccom2lem 38118 sbccom2 38119 sbccom2f 38120 sbccom2fi 38121 csbcom2fi 38122 rspcsbnea 42119 2sbcrex 42772 2sbcrexOLD 42774 sbcrot3 42779 sbcrot5 42780 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 rmydioph 43003 expdiophlem2 43011 sbcheg 43768 sbc3or 44522 trsbc 44530 onfrALTlem5 44532 eqsbc2VD 44829 sbcoreleleqVD 44848 onfrALTlem5VD 44874 ich2exprop 47472 |
| Copyright terms: Public domain | W3C validator |