| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3812 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: eqsbc2 3820 sbc3an 3821 sbccomlemOLD 3836 sbccom 3837 sbcrext 3839 sbcabel 3844 csbcow 3880 csbco 3881 sbcnel12g 4380 sbcne12 4381 csbcom 4386 csbnestgfw 4388 csbnestgf 4393 sbccsb 4402 sbccsb2 4403 csbab 4406 2nreu 4410 sbcssg 4486 sbcop 5452 sbcrel 5746 difopabOLD 5797 sbcfung 6543 tfinds2 7843 frpoins3xpg 8122 frpoins3xp3g 8123 mpoxopovel 8202 f1od2 32651 bnj62 34717 bnj89 34718 bnj156 34725 bnj524 34734 bnj610 34744 bnj919 34764 bnj976 34774 bnj110 34855 bnj91 34858 bnj92 34859 bnj106 34865 bnj121 34867 bnj124 34868 bnj125 34869 bnj126 34870 bnj130 34871 bnj154 34875 bnj155 34876 bnj153 34877 bnj207 34878 bnj523 34884 bnj526 34885 bnj539 34888 bnj540 34889 bnj581 34905 bnj591 34908 bnj609 34914 bnj611 34915 bnj934 34932 bnj1000 34938 bnj984 34949 bnj985v 34950 bnj985 34951 bnj1040 34969 bnj1123 34983 bnj1452 35049 bnj1463 35052 sbcalf 38115 sbcexf 38116 sbccom2lem 38125 sbccom2 38126 sbccom2f 38127 sbccom2fi 38128 csbcom2fi 38129 rspcsbnea 42126 2sbcrex 42779 2sbcrexOLD 42781 sbcrot3 42786 sbcrot5 42787 2rexfrabdioph 42791 3rexfrabdioph 42792 4rexfrabdioph 42793 6rexfrabdioph 42794 7rexfrabdioph 42795 rmydioph 43010 expdiophlem2 43018 sbcheg 43775 sbc3or 44529 trsbc 44537 onfrALTlem5 44539 eqsbc2VD 44836 sbcoreleleqVD 44855 onfrALTlem5VD 44881 ich2exprop 47476 |
| Copyright terms: Public domain | W3C validator |