| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3821 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1547 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1541 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: eqsbc2 3829 sbc3an 3830 sbccomlemOLD 3845 sbccom 3846 sbcrext 3848 sbcabel 3853 csbcow 3889 csbco 3890 sbcnel12g 4389 sbcne12 4390 csbcom 4395 csbnestgfw 4397 csbnestgf 4402 sbccsb 4411 sbccsb2 4412 csbab 4415 2nreu 4419 sbcssg 4495 sbcop 5464 sbcrel 5759 difopabOLD 5810 sbcfung 6559 tfinds2 7857 frpoins3xpg 8137 frpoins3xp3g 8138 mpoxopovel 8217 f1od2 32644 bnj62 34697 bnj89 34698 bnj156 34705 bnj524 34714 bnj610 34724 bnj919 34744 bnj976 34754 bnj110 34835 bnj91 34838 bnj92 34839 bnj106 34845 bnj121 34847 bnj124 34848 bnj125 34849 bnj126 34850 bnj130 34851 bnj154 34855 bnj155 34856 bnj153 34857 bnj207 34858 bnj523 34864 bnj526 34865 bnj539 34868 bnj540 34869 bnj581 34885 bnj591 34888 bnj609 34894 bnj611 34895 bnj934 34912 bnj1000 34918 bnj984 34929 bnj985v 34930 bnj985 34931 bnj1040 34949 bnj1123 34963 bnj1452 35029 bnj1463 35032 sbcalf 38084 sbcexf 38085 sbccom2lem 38094 sbccom2 38095 sbccom2f 38096 sbccom2fi 38097 csbcom2fi 38098 rspcsbnea 42090 2sbcrex 42754 2sbcrexOLD 42756 sbcrot3 42761 sbcrot5 42762 2rexfrabdioph 42766 3rexfrabdioph 42767 4rexfrabdioph 42768 6rexfrabdioph 42769 7rexfrabdioph 42770 rmydioph 42985 expdiophlem2 42993 sbcheg 43750 sbc3or 44505 trsbc 44513 onfrALTlem5 44515 eqsbc2VD 44812 sbcoreleleqVD 44831 onfrALTlem5VD 44857 ich2exprop 47433 |
| Copyright terms: Public domain | W3C validator |