![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3864 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1544 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ⊤wtru 1538 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: eqsbc2 3873 sbc3an 3874 sbccomlemOLD 3892 sbccom 3893 sbcrext 3895 sbcabel 3900 csbcow 3936 csbco 3937 sbcnel12g 4437 sbcne12 4438 csbcom 4443 csbnestgfw 4445 csbnestgf 4450 sbccsb 4459 sbccsb2 4460 csbab 4463 2nreu 4467 sbcssg 4543 sbcop 5509 sbcrel 5804 difopabOLD 5855 sbcfung 6602 tfinds2 7901 frpoins3xpg 8181 frpoins3xp3g 8182 mpoxopovel 8261 f1od2 32735 bnj62 34696 bnj89 34697 bnj156 34704 bnj524 34713 bnj610 34723 bnj919 34743 bnj976 34753 bnj110 34834 bnj91 34837 bnj92 34838 bnj106 34844 bnj121 34846 bnj124 34847 bnj125 34848 bnj126 34849 bnj130 34850 bnj154 34854 bnj155 34855 bnj153 34856 bnj207 34857 bnj523 34863 bnj526 34864 bnj539 34867 bnj540 34868 bnj581 34884 bnj591 34887 bnj609 34893 bnj611 34894 bnj934 34911 bnj1000 34917 bnj984 34928 bnj985v 34929 bnj985 34930 bnj1040 34948 bnj1123 34962 bnj1452 35028 bnj1463 35031 sbcalf 38074 sbcexf 38075 sbccom2lem 38084 sbccom2 38085 sbccom2f 38086 sbccom2fi 38087 csbcom2fi 38088 rspcsbnea 42088 2sbcrex 42740 2sbcrexOLD 42742 sbcrot3 42747 sbcrot5 42748 2rexfrabdioph 42752 3rexfrabdioph 42753 4rexfrabdioph 42754 6rexfrabdioph 42755 7rexfrabdioph 42756 rmydioph 42971 expdiophlem2 42979 sbcheg 43741 sbc3or 44503 trsbc 44511 onfrALTlem5 44513 eqsbc2VD 44811 sbcoreleleqVD 44830 onfrALTlem5VD 44856 ich2exprop 47345 |
Copyright terms: Public domain | W3C validator |