Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | sbcbidv 3776 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
4 | 3 | mptru 1546 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊤wtru 1540 [wsbc 3717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3718 |
This theorem is referenced by: eqsbc2 3786 sbc3an 3787 sbccomlem 3804 sbccom 3805 sbcrext 3807 sbcabel 3812 csbcow 3848 csbco 3849 sbcnel12g 4346 sbcne12 4347 csbcom 4352 csbnestgfw 4354 csbnestgf 4359 sbccsb 4368 sbccsb2 4369 csbab 4372 2nreu 4376 sbcssg 4455 sbcop 5404 sbcrel 5692 difopabOLD 5743 sbcfung 6465 tfinds2 7719 mpoxopovel 8045 f1od2 31065 bnj62 32708 bnj89 32709 bnj156 32716 bnj524 32726 bnj610 32736 bnj919 32756 bnj976 32766 bnj110 32847 bnj91 32850 bnj92 32851 bnj106 32857 bnj121 32859 bnj124 32860 bnj125 32861 bnj126 32862 bnj130 32863 bnj154 32867 bnj155 32868 bnj153 32869 bnj207 32870 bnj523 32876 bnj526 32877 bnj539 32880 bnj540 32881 bnj581 32897 bnj591 32900 bnj609 32906 bnj611 32907 bnj934 32924 bnj1000 32930 bnj984 32941 bnj985v 32942 bnj985 32943 bnj1040 32961 bnj1123 32975 bnj1452 33041 bnj1463 33044 frpoins3xpg 33796 frpoins3xp3g 33797 sbcalf 36281 sbcexf 36282 sbccom2lem 36291 sbccom2 36292 sbccom2f 36293 sbccom2fi 36294 csbcom2fi 36295 2sbcrex 40613 2sbcrexOLD 40615 sbcrot3 40620 sbcrot5 40621 2rexfrabdioph 40625 3rexfrabdioph 40626 4rexfrabdioph 40627 6rexfrabdioph 40628 7rexfrabdioph 40629 rmydioph 40843 expdiophlem2 40851 sbcheg 41394 sbc3or 42159 trsbc 42167 onfrALTlem5 42169 eqsbc2VD 42467 sbcoreleleqVD 42486 onfrALTlem5VD 42512 ich2exprop 44934 |
Copyright terms: Public domain | W3C validator |