| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbii | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbcbii | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
| 3 | 2 | sbcbidv 3797 | . 2 ⊢ (⊤ → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
| 4 | 3 | mptru 1548 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊤wtru 1542 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: eqsbc2 3805 sbc3an 3806 sbccomlemOLD 3821 sbccom 3822 sbcrext 3824 sbcabel 3829 csbcow 3865 csbco 3866 sbcnel12g 4364 sbcne12 4365 csbcom 4370 csbnestgfw 4372 csbnestgf 4377 sbccsb 4386 sbccsb2 4387 csbab 4390 2nreu 4394 sbcssg 4470 sbcop 5429 sbcrel 5721 sbcfung 6505 tfinds2 7794 frpoins3xpg 8070 frpoins3xp3g 8071 mpoxopovel 8150 f1od2 32700 bnj62 34730 bnj89 34731 bnj156 34738 bnj524 34747 bnj610 34757 bnj919 34777 bnj976 34787 bnj110 34868 bnj91 34871 bnj92 34872 bnj106 34878 bnj121 34880 bnj124 34881 bnj125 34882 bnj126 34883 bnj130 34884 bnj154 34888 bnj155 34889 bnj153 34890 bnj207 34891 bnj523 34897 bnj526 34898 bnj539 34901 bnj540 34902 bnj581 34918 bnj591 34921 bnj609 34927 bnj611 34928 bnj934 34945 bnj1000 34951 bnj984 34962 bnj985v 34963 bnj985 34964 bnj1040 34982 bnj1123 34996 bnj1452 35062 bnj1463 35065 sbcalf 38160 sbcexf 38161 sbccom2lem 38170 sbccom2 38171 sbccom2f 38172 sbccom2fi 38173 csbcom2fi 38174 rspcsbnea 42170 2sbcrex 42823 2sbcrexOLD 42825 sbcrot3 42830 sbcrot5 42831 2rexfrabdioph 42835 3rexfrabdioph 42836 4rexfrabdioph 42837 6rexfrabdioph 42838 7rexfrabdioph 42839 rmydioph 43053 expdiophlem2 43061 sbcheg 43818 sbc3or 44571 trsbc 44579 onfrALTlem5 44581 eqsbc2VD 44878 sbcoreleleqVD 44897 onfrALTlem5VD 44923 ich2exprop 47508 |
| Copyright terms: Public domain | W3C validator |