|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbco4 | Structured version Visualization version GIF version | ||
| Description: Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.) Avoid ax-11 2157. (Revised by SN, 3-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| sbco4 | ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ 2083 | . . . 4 ⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)) | |
| 2 | 1 | sbbidv 2079 | . . 3 ⊢ (𝑢 = 𝑦 → ([𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)) | 
| 3 | 2 | sbievw 2093 | . 2 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 4 | sbco4lem 2101 | . . 3 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑) | |
| 5 | sbco4lem 2101 | . . 3 ⊢ ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 6 | 4, 5 | bitri 275 | . 2 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| 7 | 3, 6 | bitri 275 | 1 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 | 
| This theorem is referenced by: dfich2 47445 | 
| Copyright terms: Public domain | W3C validator |