MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4 Structured version   Visualization version   GIF version

Theorem sbco4 2278
Description: Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
Assertion
Ref Expression
sbco4 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑣,𝑢,𝜑   𝑥,𝑢,𝑣   𝑦,𝑢,𝑣   𝜑,𝑤   𝑥,𝑤   𝑦,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sbcom2 2163 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2 sbco2vv 2102 . . . 4 ([𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
32sbbii 2080 . . 3 ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
41, 3bitr3i 276 . 2 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
5 sbco4lem 2276 . 2 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑)
6 sbco4lem 2276 . 2 ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
74, 5, 63bitri 296 1 ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by:  dfich2  44798
  Copyright terms: Public domain W3C validator