MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2vv Structured version   Visualization version   GIF version

Theorem sbco2vv 2100
Description: A composition law for substitution. Version of sbco2 2515 with disjoint variable conditions and fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
sbco2vv ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco2vv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbequ 2086 . 2 (𝑧 = 𝑤 → ([𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑))
2 sbequ 2086 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2sbievw2 2099 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068
This theorem is referenced by:  sbco4lem  2273  sbco4lemOLD  2274  sbco4  2275  cbvabv  2811  sbralie  3406  sbccow  3739  wl-equsb3  35711  2reu8i  44605
  Copyright terms: Public domain W3C validator