MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2vv Structured version   Visualization version   GIF version

Theorem sbco2vv 2099
Description: A composition law for substitution. Version of sbco2 2519 with disjoint variable conditions and fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 29-Apr-2023.)
Assertion
Ref Expression
sbco2vv ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco2vv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbequ 2083 . 2 (𝑧 = 𝑤 → ([𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑))
2 sbequ 2083 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2sbievw2 2098 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  cbvsbv  2100  sbco4lemOLD  2175  sbco4OLD  2176  sbco4lemOLDOLD  2282  sbralie  3366  sbralieALT  3367  sbccow  3827  wl-equsb3  37510  2reu8i  47028
  Copyright terms: Public domain W3C validator