Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbco2vv | Structured version Visualization version GIF version |
Description: A composition law for substitution. Version of sbco2 2515 with disjoint variable conditions and fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
sbco2vv | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ 2087 | . 2 ⊢ (𝑧 = 𝑤 → ([𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)) | |
2 | sbequ 2087 | . 2 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | sbievw2 2101 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbco4lem 2276 sbco4lemOLD 2277 sbco4 2278 cbvabv 2812 sbralie 3395 sbccow 3734 wl-equsb3 35638 2reu8i 44492 |
Copyright terms: Public domain | W3C validator |