MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcthdv Structured version   Visualization version   GIF version

Theorem sbcthdv 3771
Description: Deduction version of sbcth 3770. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcthdv.1 (𝜑𝜓)
Assertion
Ref Expression
sbcthdv ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcthdv
StepHypRef Expression
1 sbcthdv.1 . . 3 (𝜑𝜓)
21alrimiv 1927 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 3768 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
42, 3mpan9 506 1 ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  [wsbc 3755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator