MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcthdv Structured version   Visualization version   GIF version

Theorem sbcthdv 3803
Description: Deduction version of sbcth 3802. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcthdv.1 (𝜑𝜓)
Assertion
Ref Expression
sbcthdv ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcthdv
StepHypRef Expression
1 sbcthdv.1 . . 3 (𝜑𝜓)
21alrimiv 1926 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 3800 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
42, 3mpan9 506 1 ((𝜑𝐴𝑉) → [𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2107  [wsbc 3787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-sbc 3788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator