| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcid | Structured version Visualization version GIF version | ||
| Description: An identity theorem for substitution. See sbid 2258. (Contributed by Mario Carneiro, 18-Feb-2017.) |
| Ref | Expression |
|---|---|
| sbcid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3745 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑥]𝜑) | |
| 2 | sbid 2258 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | bitr3i 277 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: csbid 3863 snfil 23777 ex-natded9.26 30394 bnj605 34914 dedths 39000 frege93 43988 or2expropbilem1 47062 |
| Copyright terms: Public domain | W3C validator |