![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcid | Structured version Visualization version GIF version |
Description: An identity theorem for substitution. See sbid 2239. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3774 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2239 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitr3i 277 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2059 [wsbc 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-sbc 3771 |
This theorem is referenced by: csbid 3899 snfil 23712 ex-natded9.26 30166 bnj605 34436 dedths 38335 frege93 43256 or2expropbilem1 46287 |
Copyright terms: Public domain | W3C validator |