MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Structured version   Visualization version   GIF version

Theorem sbcid 3793
Description: An identity theorem for substitution. See sbid 2247. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3780 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 2247 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 276 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-sbc 3777
This theorem is referenced by:  csbid  3905  snfil  23359  ex-natded9.26  29661  bnj605  33906  dedths  37820  frege93  42692  or2expropbilem1  45728
  Copyright terms: Public domain W3C validator