MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Structured version   Visualization version   GIF version

Theorem sbcid 3787
Description: An identity theorem for substitution. See sbid 2239. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3774 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 2239 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 277 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2059  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-sbc 3771
This theorem is referenced by:  csbid  3899  snfil  23712  ex-natded9.26  30166  bnj605  34436  dedths  38335  frege93  43256  or2expropbilem1  46287
  Copyright terms: Public domain W3C validator