![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcid | Structured version Visualization version GIF version |
Description: An identity theorem for substitution. See sbid 2253. (Contributed by Mario Carneiro, 18-Feb-2017.) |
Ref | Expression |
---|---|
sbcid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3795 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑥]𝜑) | |
2 | sbid 2253 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
3 | 1, 2 | bitr3i 277 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2062 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: csbid 3921 snfil 23888 ex-natded9.26 30448 bnj605 34900 dedths 38944 frege93 43946 or2expropbilem1 46982 |
Copyright terms: Public domain | W3C validator |