MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Structured version   Visualization version   GIF version

Theorem sbcid 3733
Description: An identity theorem for substitution. See sbid 2248. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3720 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 2248 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 276 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  csbid  3845  snfil  23015  ex-natded9.26  28783  bnj605  32887  dedths  36976  frege93  41564  or2expropbilem1  44526
  Copyright terms: Public domain W3C validator