MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Structured version   Visualization version   GIF version

Theorem sbcid 3711
Description: An identity theorem for substitution. See sbid 2253. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3698 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 2253 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 280 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  [wsb 2070  [wsbc 3694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-sbc 3695
This theorem is referenced by:  csbid  3824  snfil  22761  ex-natded9.26  28502  bnj605  32600  dedths  36713  frege93  41241  or2expropbilem1  44198
  Copyright terms: Public domain W3C validator