Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spsbc | Structured version Visualization version GIF version |
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2074 and rspsbc 3791. (Contributed by NM, 16-Jan-2004.) |
Ref | Expression |
---|---|
spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2074 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | sbsbc 3698 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | sylib 221 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
4 | dfsbcq 3696 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | 3, 4 | syl5ib 247 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
6 | 5 | vtocleg 3497 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 = wceq 1543 [wsb 2070 ∈ wcel 2110 [wsbc 3694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3695 |
This theorem is referenced by: spsbcd 3708 sbcth 3709 sbcthdv 3710 sbceqalOLD 3762 sbcimdvOLD 3770 csbiebt 3841 csbexg 5203 pm14.18 41719 sbcbi 41832 onfrALTlem3 41837 sbc3orgVD 42144 sbcbiVD 42169 csbingVD 42177 onfrALTlem3VD 42180 csbeq2gVD 42185 csbunigVD 42191 |
Copyright terms: Public domain | W3C validator |