| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbc | Structured version Visualization version GIF version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2069 and rspsbc 3859. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2069 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 2 | sbsbc 3774 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
| 4 | dfsbcq 3772 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 5 | 3, 4 | imbitrid 244 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 6 | 5 | vtocleg 3537 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: spsbcd 3784 sbcth 3785 sbcthdv 3786 csbiebt 3908 csbexg 5285 pm14.18 44419 sbcbi 44531 onfrALTlem3 44536 sbc3orgVD 44842 sbcbiVD 44867 csbingVD 44875 onfrALTlem3VD 44878 csbeq2gVD 44883 csbunigVD 44889 |
| Copyright terms: Public domain | W3C validator |