| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spsbc | Structured version Visualization version GIF version | ||
| Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2069 and rspsbc 3845. (Contributed by NM, 16-Jan-2004.) |
| Ref | Expression |
|---|---|
| spsbc | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2069 | . . . 4 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 2 | sbsbc 3760 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | sylib 218 | . . 3 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
| 4 | dfsbcq 3758 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 5 | 3, 4 | imbitrid 244 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| 6 | 5 | vtocleg 3522 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: spsbcd 3770 sbcth 3771 sbcthdv 3772 csbiebt 3894 csbexg 5268 pm14.18 44424 sbcbi 44536 onfrALTlem3 44541 sbc3orgVD 44847 sbcbiVD 44872 csbingVD 44880 onfrALTlem3VD 44883 csbeq2gVD 44888 csbunigVD 44894 |
| Copyright terms: Public domain | W3C validator |