MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbc Structured version   Visualization version   GIF version

Theorem spsbc 3724
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2072 and rspsbc 3808. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))

Proof of Theorem spsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 stdpc4 2072 . . . 4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbsbc 3715 . . . 4 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
31, 2sylib 217 . . 3 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
4 dfsbcq 3713 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
53, 4syl5ib 243 . 2 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
65vtocleg 3511 1 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  [wsb 2068  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  spsbcd  3725  sbcth  3726  sbcthdv  3727  sbceqalOLD  3779  sbcimdvOLD  3787  csbiebt  3858  csbexg  5229  pm14.18  41935  sbcbi  42048  onfrALTlem3  42053  sbc3orgVD  42360  sbcbiVD  42385  csbingVD  42393  onfrALTlem3VD  42396  csbeq2gVD  42401  csbunigVD  42407
  Copyright terms: Public domain W3C validator