MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbc Structured version   Visualization version   GIF version

Theorem spsbc 3740
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2070 and rspsbc 3823. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))

Proof of Theorem spsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 stdpc4 2070 . . . 4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbsbc 3731 . . . 4 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
31, 2sylib 217 . . 3 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
4 dfsbcq 3729 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
53, 4syl5ib 243 . 2 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
65vtocleg 3530 1 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  [wsb 2066  wcel 2105  [wsbc 3727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-sbc 3728
This theorem is referenced by:  spsbcd  3741  sbcth  3742  sbcthdv  3743  sbceqalOLD  3794  sbcimdvOLD  3802  csbiebt  3873  csbexg  5254  pm14.18  42367  sbcbi  42480  onfrALTlem3  42485  sbc3orgVD  42792  sbcbiVD  42817  csbingVD  42825  onfrALTlem3VD  42828  csbeq2gVD  42833  csbunigVD  42839
  Copyright terms: Public domain W3C validator