MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbc Structured version   Visualization version   GIF version

Theorem spsbc 3783
Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. This is Frege's ninth axiom per Proposition 58 of [Frege1879] p. 51. See also stdpc4 2069 and rspsbc 3859. (Contributed by NM, 16-Jan-2004.)
Assertion
Ref Expression
spsbc (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))

Proof of Theorem spsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 stdpc4 2069 . . . 4 (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
2 sbsbc 3774 . . . 4 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
31, 2sylib 218 . . 3 (∀𝑥𝜑[𝑦 / 𝑥]𝜑)
4 dfsbcq 3772 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
53, 4imbitrid 244 . 2 (𝑦 = 𝐴 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
65vtocleg 3537 1 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  [wsb 2065  wcel 2109  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-sbc 3771
This theorem is referenced by:  spsbcd  3784  sbcth  3785  sbcthdv  3786  csbiebt  3908  csbexg  5285  pm14.18  44419  sbcbi  44531  onfrALTlem3  44536  sbc3orgVD  44842  sbcbiVD  44867  csbingVD  44875  onfrALTlem3VD  44878  csbeq2gVD  44883  csbunigVD  44889
  Copyright terms: Public domain W3C validator