![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version GIF version |
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1793 | . 2 ⊢ ∀𝑥𝜑 |
3 | spsbc 3817 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: iota4an 6555 tfinds2 7901 wunnat 18024 wunnatOLD 18025 catcfuccl 18186 catcfucclOLD 18187 dprdval 20047 opsbc2ie 32504 bj-sbceqgALT 36868 f1omptsnlem 37302 mptsnunlem 37304 topdifinffinlem 37313 relowlpssretop 37330 cdlemk35s 40894 cdlemk39s 40896 cdlemk42 40898 frege92 43917 |
Copyright terms: Public domain | W3C validator |