MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcth Structured version   Visualization version   GIF version

Theorem sbcth 3792
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1 𝜑
Assertion
Ref Expression
sbcth (𝐴𝑉[𝐴 / 𝑥]𝜑)

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3 𝜑
21ax-gen 1796 . 2 𝑥𝜑
3 spsbc 3790 . 2 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 20 1 (𝐴𝑉[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2105  [wsbc 3777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-sbc 3778
This theorem is referenced by:  iota4an  6525  tfinds2  7857  wunnat  17914  wunnatOLD  17915  catcfuccl  18076  catcfucclOLD  18077  dprdval  19918  opsbc2ie  31998  bj-sbceqgALT  36098  f1omptsnlem  36533  mptsnunlem  36535  topdifinffinlem  36544  relowlpssretop  36561  cdlemk35s  40124  cdlemk39s  40126  cdlemk42  40128  frege92  43021
  Copyright terms: Public domain W3C validator