| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version GIF version | ||
| Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcth.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1796 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | spsbc 3749 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: iota4an 6463 tfinds2 7794 wunnat 17866 catcfuccl 18025 dprdval 19917 opsbc2ie 32455 bj-sbceqgALT 36946 f1omptsnlem 37380 mptsnunlem 37382 topdifinffinlem 37391 relowlpssretop 37408 cdlemk35s 41046 cdlemk39s 41048 cdlemk42 41050 frege92 44058 |
| Copyright terms: Public domain | W3C validator |