MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcth Structured version   Visualization version   GIF version

Theorem sbcth 3791
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcth.1 𝜑
Assertion
Ref Expression
sbcth (𝐴𝑉[𝐴 / 𝑥]𝜑)

Proof of Theorem sbcth
StepHypRef Expression
1 sbcth.1 . . 3 𝜑
21ax-gen 1797 . 2 𝑥𝜑
3 spsbc 3789 . 2 (𝐴𝑉 → (∀𝑥𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 20 1 (𝐴𝑉[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2106  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-sbc 3777
This theorem is referenced by:  iota4an  6522  tfinds2  7849  wunnat  17903  wunnatOLD  17904  catcfuccl  18065  catcfucclOLD  18066  dprdval  19867  opsbc2ie  31703  bj-sbceqgALT  35770  f1omptsnlem  36205  mptsnunlem  36207  topdifinffinlem  36216  relowlpssretop  36233  cdlemk35s  39796  cdlemk39s  39798  cdlemk42  39800  frege92  42691
  Copyright terms: Public domain W3C validator