Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version GIF version |
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑥𝜑 |
3 | spsbc 3724 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: iota4an 6400 tfinds2 7685 wunnat 17588 wunnatOLD 17589 catcfuccl 17750 catcfucclOLD 17751 dprdval 19521 opsbc2ie 30725 bj-sbceqgALT 35014 f1omptsnlem 35434 mptsnunlem 35436 topdifinffinlem 35445 relowlpssretop 35462 cdlemk35s 38878 cdlemk39s 38880 cdlemk42 38882 frege92 41452 |
Copyright terms: Public domain | W3C validator |