![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version GIF version |
Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
Ref | Expression |
---|---|
sbcth.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | ax-gen 1792 | . 2 ⊢ ∀𝑥𝜑 |
3 | spsbc 3804 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2106 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: iota4an 6545 tfinds2 7885 wunnat 18011 wunnatOLD 18012 catcfuccl 18173 catcfucclOLD 18174 dprdval 20038 opsbc2ie 32504 bj-sbceqgALT 36885 f1omptsnlem 37319 mptsnunlem 37321 topdifinffinlem 37330 relowlpssretop 37347 cdlemk35s 40920 cdlemk39s 40922 cdlemk42 40924 frege92 43945 |
Copyright terms: Public domain | W3C validator |