| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version GIF version | ||
| Description: A substitution into a theorem remains true (when 𝐴 is a set). (Contributed by NM, 5-Nov-2005.) |
| Ref | Expression |
|---|---|
| sbcth.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbcth | ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 | . . 3 ⊢ 𝜑 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥𝜑 |
| 3 | spsbc 3769 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | mpi 20 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: iota4an 6496 tfinds2 7843 wunnat 17928 catcfuccl 18087 dprdval 19942 opsbc2ie 32412 bj-sbceqgALT 36897 f1omptsnlem 37331 mptsnunlem 37333 topdifinffinlem 37342 relowlpssretop 37359 cdlemk35s 40938 cdlemk39s 40940 cdlemk42 40942 frege92 43951 |
| Copyright terms: Public domain | W3C validator |