MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ6 Structured version   Visualization version   GIF version

Theorem sbequ6 2488
Description: Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ6 ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ6
StepHypRef Expression
1 nfnae 2418 . 2 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
21sbf 2479 1 ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 198  wal 1651  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator