MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ6 Structured version   Visualization version   GIF version

Theorem sbequ6 2471
Description: Substitution does not change a distinctor. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Assertion
Ref Expression
sbequ6 ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem sbequ6
StepHypRef Expression
1 nfnae 2439 . 2 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
21sbf 2271 1 ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator