Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcim1 | Structured version Visualization version GIF version |
Description: Distribution of class substitution over implication. One direction of sbcimg 3729 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcim1 | ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3690 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → 𝐴 ∈ V) | |
2 | sbcimg 3729 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
3 | 2 | biimpd 232 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
4 | 1, 3 | mpcom 38 | 1 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 Vcvv 3398 [wsbc 3680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-sbc 3681 |
This theorem is referenced by: sbcimdv 3751 opsbc2ie 30398 frege59c 41076 frege60c 41077 frege62c 41079 frege65c 41082 frege70 41087 frege72 41089 frege92 41109 frege120 41137 |
Copyright terms: Public domain | W3C validator |