Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcim1 | Structured version Visualization version GIF version |
Description: Distribution of class substitution over implication. One direction of sbcimg 3770 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) Avoid ax-10 2140, ax-12 2174. (Revised by SN, 26-Oct-2024.) |
Ref | Expression |
---|---|
sbcim1 | ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3729 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → 𝐴 ∈ V) | |
2 | dfsbcq2 3722 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ [𝐴 / 𝑥](𝜑 → 𝜓))) | |
3 | dfsbcq2 3722 | . . . . 5 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
4 | dfsbcq2 3722 | . . . . 5 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
5 | 3, 4 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
6 | 2, 5 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) ↔ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)))) |
7 | sbi1 2077 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
8 | 6, 7 | vtoclg 3503 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) |
9 | 1, 8 | mpcom 38 | 1 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 [wsb 2070 ∈ wcel 2109 Vcvv 3430 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sbc 3720 |
This theorem is referenced by: sbcimdvOLD 3795 opsbc2ie 30803 frege59c 41483 frege60c 41484 frege62c 41486 frege65c 41489 frege70 41494 frege72 41496 frege92 41516 frege120 41544 |
Copyright terms: Public domain | W3C validator |