MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcim1 Structured version   Visualization version   GIF version

Theorem sbcim1 3810
Description: Distribution of class substitution over implication. One direction of sbcimg 3805 that holds for proper classes. (Contributed by NM, 17-Aug-2018.) Avoid ax-10 2142, ax-12 2178. (Revised by SN, 26-Oct-2024.)
Assertion
Ref Expression
sbcim1 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcim1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3766 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 dfsbcq2 3759 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
3 dfsbcq2 3759 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
4 dfsbcq2 3759 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
53, 4imbi12d 344 . . . 4 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
62, 5imbi12d 344 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) ↔ ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))))
7 sbi1 2072 . . 3 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
86, 7vtoclg 3523 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
91, 8mpcom 38 1 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  [wsb 2065  wcel 2109  Vcvv 3450  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sbc 3757
This theorem is referenced by:  opsbc2ie  32412  frege59c  43918  frege60c  43919  frege62c  43921  frege65c  43924  frege70  43929  frege72  43931  frege92  43951  frege120  43979
  Copyright terms: Public domain W3C validator