MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcim1 Structured version   Visualization version   GIF version

Theorem sbcim1 3645
Description: Distribution of class substitution over implication. One direction of sbcimg 3640 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcim1 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcim1
StepHypRef Expression
1 sbcex 3608 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcimg 3640 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
32biimpd 220 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
41, 3mpcom 38 1 ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2155  Vcvv 3350  [wsbc 3598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-v 3352  df-sbc 3599
This theorem is referenced by:  sbcimdv  3660  frege59c  38914  frege60c  38915  frege62c  38917  frege65c  38920  frege70  38925  frege72  38927  frege92  38947  frege120  38975
  Copyright terms: Public domain W3C validator