| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ab0 | Structured version Visualization version GIF version | ||
| Description: The class of sets verifying a falsity is the empty set (closed form of abf 4369). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ab0 | ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 2069 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑) | |
| 2 | sbn1 2108 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 5 | 3, 4 | sylnibr 329 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 6 | 5 | eq0rdv 4370 | 1 ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: bj-abf 36897 bj-csbprc 36898 |
| Copyright terms: Public domain | W3C validator |