Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ab0 | Structured version Visualization version GIF version |
Description: The class of sets verifying a falsity is the empty set (closed form of abf 4333). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ab0 | ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2072 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑) | |
2 | sbn1 2107 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) |
4 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
5 | 3, 4 | sylnibr 328 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | 5 | eq0rdv 4335 | 1 ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: bj-abf 35021 bj-csbprc 35022 |
Copyright terms: Public domain | W3C validator |