![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ab0 | Structured version Visualization version GIF version |
Description: The class of sets verifying a falsity is the empty set (closed form of abf 4429). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ab0 | ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2068 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑) | |
2 | sbn1 2107 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) |
4 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
5 | 3, 4 | sylnibr 329 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | 5 | eq0rdv 4430 | 1 ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-dif 3979 df-nul 4353 |
This theorem is referenced by: bj-abf 36875 bj-csbprc 36876 |
Copyright terms: Public domain | W3C validator |