Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ab0 Structured version   Visualization version   GIF version

Theorem bj-ab0 34499
 Description: The class of sets verifying a falsity is the empty set (closed form of abf 4313). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ab0 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)

Proof of Theorem bj-ab0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1911 . . 3 (∀𝑥 ¬ 𝜑 → ∀𝑦𝑥 ¬ 𝜑)
2 stdpc4 2073 . . . . 5 (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑)
3 sbn 2283 . . . . 5 ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑)
42, 3sylib 221 . . . 4 (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑)
5 df-clab 2777 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
64, 5sylnibr 332 . . 3 (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
71, 6alrimih 1825 . 2 (∀𝑥 ¬ 𝜑 → ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
8 eq0 4261 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥𝜑})
97, 8sylibr 237 1 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1536   = wceq 1538  [wsb 2069   ∈ wcel 2111  {cab 2776  ∅c0 4246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-dif 3886  df-nul 4247 This theorem is referenced by:  bj-abf  34500  bj-csbprc  34501
 Copyright terms: Public domain W3C validator