Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ab0 | Structured version Visualization version GIF version |
Description: The class of sets verifying a falsity is the empty set (closed form of abf 4317). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ab0 | ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 2074 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑) | |
2 | sbn1 2109 | . . . 4 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑) |
4 | df-clab 2715 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
5 | 3, 4 | sylnibr 332 | . 2 ⊢ (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | 5 | eq0rdv 4319 | 1 ⊢ (∀𝑥 ¬ 𝜑 → {𝑥 ∣ 𝜑} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1541 = wceq 1543 [wsb 2070 ∈ wcel 2110 {cab 2714 ∅c0 4237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-dif 3869 df-nul 4238 |
This theorem is referenced by: bj-abf 34831 bj-csbprc 34832 |
Copyright terms: Public domain | W3C validator |