Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ab0 Structured version   Visualization version   GIF version

Theorem bj-ab0 36252
Description: The class of sets verifying a falsity is the empty set (closed form of abf 4402). (Contributed by BJ, 24-Jul-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ab0 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)

Proof of Theorem bj-ab0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 stdpc4 2070 . . . 4 (∀𝑥 ¬ 𝜑 → [𝑦 / 𝑥] ¬ 𝜑)
2 sbn1 2104 . . . 4 ([𝑦 / 𝑥] ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑)
31, 2syl 17 . . 3 (∀𝑥 ¬ 𝜑 → ¬ [𝑦 / 𝑥]𝜑)
4 df-clab 2709 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
53, 4sylnibr 329 . 2 (∀𝑥 ¬ 𝜑 → ¬ 𝑦 ∈ {𝑥𝜑})
65eq0rdv 4404 1 (∀𝑥 ¬ 𝜑 → {𝑥𝜑} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538   = wceq 1540  [wsb 2066  wcel 2105  {cab 2708  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-dif 3951  df-nul 4323
This theorem is referenced by:  bj-abf  36253  bj-csbprc  36254
  Copyright terms: Public domain W3C validator