MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrbif Structured version   Visualization version   GIF version

Theorem sbrbif 2308
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
sbrbif.1 𝑥𝜒
sbrbif.2 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbrbif ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem sbrbif
StepHypRef Expression
1 sbrbif.2 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
21sbrbis 2307 . 2 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
3 sbrbif.1 . . . 4 𝑥𝜒
43sbf 2263 . . 3 ([𝑦 / 𝑥]𝜒𝜒)
54bibi2i 338 . 2 ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓𝜒))
62, 5bitri 274 1 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator