| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbrbif | Structured version Visualization version GIF version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbrbif.1 | ⊢ Ⅎ𝑥𝜒 |
| sbrbif.2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sbrbif | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbrbif.2 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 2 | 1 | sbrbis 2311 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| 3 | sbrbif.1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 4 | 3 | sbf 2272 | . . 3 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜒) |
| 5 | 4 | bibi2i 337 | . 2 ⊢ ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ 𝜒)) |
| 6 | 2, 5 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |