|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbrbif | Structured version Visualization version GIF version | ||
| Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| sbrbif.1 | ⊢ Ⅎ𝑥𝜒 | 
| sbrbif.2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| sbrbif | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbrbif.2 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 2 | 1 | sbrbis 2310 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) | 
| 3 | sbrbif.1 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 4 | 3 | sbf 2271 | . . 3 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜒) | 
| 5 | 4 | bibi2i 337 | . 2 ⊢ ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| 6 | 2, 5 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |