MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrbis Structured version   Visualization version   GIF version

Theorem sbrbis 2310
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbrbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbrbis ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))

Proof of Theorem sbrbis
StepHypRef Expression
1 sbbi 2308 . 2 ([𝑦 / 𝑥](𝜑𝜒) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒))
2 sbrbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi1i 338 . 2 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
41, 3bitri 274 1 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sbrbif  2311  sbabel  2940  sbabelOLD  2941
  Copyright terms: Public domain W3C validator