| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbnf | Structured version Visualization version GIF version | ||
| Description: Move nonfree predicate in and out of substitution; see sbal 2169 and sbex 2281. (Contributed by BJ, 2-May-2019.) (Proof shortened by Wolf Lammen, 2-May-2025.) |
| Ref | Expression |
|---|---|
| sbnf | ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1784 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | sbbii 2076 | . 2 ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ [𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑)) |
| 3 | sbim 2303 | . 2 ⊢ ([𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑)) | |
| 4 | sbex 2281 | . . . 4 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
| 5 | sbal 2169 | . . . 4 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) | |
| 6 | 4, 5 | imbi12i 350 | . . 3 ⊢ (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)) |
| 7 | df-nf 1784 | . . 3 ⊢ (Ⅎ𝑥[𝑧 / 𝑦]𝜑 ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
| 9 | 2, 3, 8 | 3bitri 297 | 1 ⊢ ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: bj-nfcf 36941 wl-nfsbtv 37595 |
| Copyright terms: Public domain | W3C validator |