MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnf Structured version   Visualization version   GIF version

Theorem sbnf 2301
Description: Move nonfree predicate in and out of substitution; see sbal 2158 and sbex 2270. (Contributed by BJ, 2-May-2019.) (Proof shortened by Wolf Lammen, 2-May-2025.)
Assertion
Ref Expression
sbnf ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbnf
StepHypRef Expression
1 df-nf 1778 . . 3 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
21sbbii 2071 . 2 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ [𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑))
3 sbim 2292 . 2 ([𝑧 / 𝑦](∃𝑥𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑))
4 sbex 2270 . . . 4 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
5 sbal 2158 . . . 4 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
64, 5imbi12i 349 . . 3 (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
7 df-nf 1778 . . 3 (Ⅎ𝑥[𝑧 / 𝑦]𝜑 ↔ (∃𝑥[𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
86, 7bitr4i 277 . 2 (([𝑧 / 𝑦]∃𝑥𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
92, 3, 83bitri 296 1 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wex 1773  wnf 1777  [wsb 2059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060
This theorem is referenced by:  bj-nfcf  36434  wl-nfsbtv  37077
  Copyright terms: Public domain W3C validator