Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimv | Structured version Visualization version GIF version |
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2310 not depending on ax-10 2143, but with disjoint variables. (Contributed by Wolf Lammen, 28-Jan-2024.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbrimv | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrim.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | 19.21 2206 | . 2 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
3 | 2 | sbrimvlem 2099 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 Ⅎwnf 1786 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-nf 1787 df-sb 2071 |
This theorem is referenced by: sbiedw 2324 |
Copyright terms: Public domain | W3C validator |