MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrimv Structured version   Visualization version   GIF version

Theorem sbrimv 2305
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2304 not depending on ax-10 2139, but with disjoint variables. (Contributed by Wolf Lammen, 28-Jan-2024.)
Hypothesis
Ref Expression
sbrim.1 𝑥𝜑
Assertion
Ref Expression
sbrimv ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbrimv
StepHypRef Expression
1 sbrim.1 . . 3 𝑥𝜑
2119.21 2203 . 2 (∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
32sbrimvlem 2095 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sbiedw  2313
  Copyright terms: Public domain W3C validator