Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimv | Structured version Visualization version GIF version |
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2304 not depending on ax-10 2139, but with disjoint variables. (Contributed by Wolf Lammen, 28-Jan-2024.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbrimv | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrim.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | 19.21 2203 | . 2 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
3 | 2 | sbrimvlem 2095 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbiedw 2313 |
Copyright terms: Public domain | W3C validator |