Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrim Structured version   Visualization version   GIF version

Theorem sbrim 2309
 Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. See sbrimv 2310 for a version with disjoint variables not requiring ax-10 2142. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbrim.1 𝑥𝜑
Assertion
Ref Expression
sbrim ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbrim
StepHypRef Expression
1 sbim 2307 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbrim.1 . . . 4 𝑥𝜑
32sbf 2268 . . 3 ([𝑦 / 𝑥]𝜑𝜑)
43imbi1i 353 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
51, 4bitri 278 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  Ⅎwnf 1785  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  sbiedwOLD  2324  sbied  2522  sbco2d  2531  2mos  2711
 Copyright terms: Public domain W3C validator