| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bi2.04 387 | . . . . . . 7
⊢ ((𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 = 𝑡 → 𝜓))) | 
| 2 | 1 | albii 1818 | . . . . . 6
⊢
(∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 = 𝑡 → 𝜓))) | 
| 3 |  | sbrim.1 | . . . . . . 7
⊢
Ⅎ𝑥𝜑 | 
| 4 | 3 | 19.21 2206 | . . . . . 6
⊢
(∀𝑥(𝜑 → (𝑥 = 𝑡 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | 
| 5 | 2, 4 | bitri 275 | . . . . 5
⊢
(∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | 
| 6 | 5 | imbi2i 336 | . . . 4
⊢ ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ (𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 7 |  | bi2.04 387 | . . . 4
⊢ ((𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 8 | 6, 7 | bitri 275 | . . 3
⊢ ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 9 | 8 | albii 1818 | . 2
⊢
(∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 10 |  | df-sb 2064 | . 2
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)))) | 
| 11 |  | df-sb 2064 | . . . 4
⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | 
| 12 | 11 | imbi2i 336 | . . 3
⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 13 |  | 19.21v 1938 | . . 3
⊢
(∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 14 | 12, 13 | bitr4i 278 | . 2
⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) | 
| 15 | 9, 10, 14 | 3bitr4i 303 | 1
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |