| Step | Hyp | Ref
| Expression |
| 1 | | bi2.04 387 |
. . . . . . 7
⊢ ((𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 = 𝑡 → 𝜓))) |
| 2 | 1 | albii 1819 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 = 𝑡 → 𝜓))) |
| 3 | | sbrim.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝜑 |
| 4 | 3 | 19.21 2208 |
. . . . . 6
⊢
(∀𝑥(𝜑 → (𝑥 = 𝑡 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) |
| 5 | 2, 4 | bitri 275 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) |
| 6 | 5 | imbi2i 336 |
. . . 4
⊢ ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ (𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 7 | | bi2.04 387 |
. . . 4
⊢ ((𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 8 | 6, 7 | bitri 275 |
. . 3
⊢ ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 9 | 8 | albii 1819 |
. 2
⊢
(∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓))) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 10 | | df-sb 2066 |
. 2
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → 𝜓)))) |
| 11 | | df-sb 2066 |
. . . 4
⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) |
| 12 | 11 | imbi2i 336 |
. . 3
⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 13 | | 19.21v 1939 |
. . 3
⊢
(∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 14 | 12, 13 | bitr4i 278 |
. 2
⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → 𝜓)))) |
| 15 | 9, 10, 14 | 3bitr4i 303 |
1
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |