MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrim Structured version   Visualization version   GIF version

Theorem sbrim 2301
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) Avoid ax-10 2137. (Revised by Gino Giotto, 20-Nov-2024.)
Hypothesis
Ref Expression
sbrim.1 𝑥𝜑
Assertion
Ref Expression
sbrim ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbrim
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bi2.04 389 . . . . . . 7 ((𝑥 = 𝑡 → (𝜑𝜓)) ↔ (𝜑 → (𝑥 = 𝑡𝜓)))
21albii 1822 . . . . . 6 (∀𝑥(𝑥 = 𝑡 → (𝜑𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 = 𝑡𝜓)))
3 sbrim.1 . . . . . . 7 𝑥𝜑
4319.21 2200 . . . . . 6 (∀𝑥(𝜑 → (𝑥 = 𝑡𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡𝜓)))
52, 4bitri 274 . . . . 5 (∀𝑥(𝑥 = 𝑡 → (𝜑𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡𝜓)))
65imbi2i 336 . . . 4 ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑𝜓))) ↔ (𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜓))))
7 bi2.04 389 . . . 4 ((𝑡 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
86, 7bitri 274 . . 3 ((𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑𝜓))) ↔ (𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
98albii 1822 . 2 (∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑𝜓))) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
10 df-sb 2068 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡 → (𝜑𝜓))))
11 df-sb 2068 . . . 4 ([𝑦 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓)))
1211imbi2i 336 . . 3 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
13 19.21v 1942 . . 3 (∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))) ↔ (𝜑 → ∀𝑡(𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
1412, 13bitr4i 277 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ ∀𝑡(𝜑 → (𝑡 = 𝑦 → ∀𝑥(𝑥 = 𝑡𝜓))))
159, 10, 143bitr4i 303 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbiedw  2310  sbied  2507  sbco2d  2516  2mos  2651
  Copyright terms: Public domain W3C validator