| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sblim | Structured version Visualization version GIF version | ||
| Description: Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sblim.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| sblim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim 2303 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sblim.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | sbf 2271 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 4 | 3 | imbi2i 336 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbmo 2614 sbralie 3358 |
| Copyright terms: Public domain | W3C validator |