Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sblim | Structured version Visualization version GIF version |
Description: Substitution in an implication with a variable not free in the consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sblim.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
sblim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2304 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sblim.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | sbf 2267 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
4 | 3 | imbi2i 339 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
5 | 1, 4 | bitri 278 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 Ⅎwnf 1791 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2071 |
This theorem is referenced by: sbmo 2615 |
Copyright terms: Public domain | W3C validator |