Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimvlem | Structured version Visualization version GIF version |
Description: Common proof template for sbrimvw 2098 and sbrimv 2306. The hypothesis is an instance of 19.21 2205. (Contributed by Wolf Lammen, 29-Jan-2024.) |
Ref | Expression |
---|---|
sbrimvlem.1 | ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
Ref | Expression |
---|---|
sbrimvlem | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2091 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
2 | bi2.04 392 | . . . 4 ⊢ ((𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
3 | 2 | albii 1827 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
4 | sbrimvlem.1 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
5 | 1, 3, 4 | 3bitr2i 302 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
6 | sb6 2091 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
7 | 6 | imbi2i 339 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
8 | 5, 7 | bitr4i 281 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2071 |
This theorem is referenced by: sbrimvw 2098 sbrimv 2306 |
Copyright terms: Public domain | W3C validator |