MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiedw Structured version   Visualization version   GIF version

Theorem sbiedw 2310
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbiev 2309). Version of sbied 2507 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
sbiedw.1 𝑥𝜑
sbiedw.2 (𝜑 → Ⅎ𝑥𝜒)
sbiedw.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
sbiedw (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem sbiedw
StepHypRef Expression
1 sbiedw.1 . . . 4 𝑥𝜑
21sbrim 2301 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
3 sbiedw.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
41, 3nfim1 2192 . . . 4 𝑥(𝜑𝜒)
5 sbiedw.3 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
65com12 32 . . . . 5 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
76pm5.74d 272 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
84, 7sbiev 2309 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑𝜒))
92, 8bitr3i 276 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑𝜒))
109pm5.74ri 271 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  csbie2df  4374
  Copyright terms: Public domain W3C validator