Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimvw | Structured version Visualization version GIF version |
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2310 and sbrimv 2311 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of Gino Giotto. (Contributed by Wolf Lammen, 29-Jan-2024.) |
Ref | Expression |
---|---|
sbrimvw | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.21v 1941 | . 2 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
2 | 1 | sbrimvlem 2099 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 |
This theorem is referenced by: sbiedvw 2102 |
Copyright terms: Public domain | W3C validator |