MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrimvw Structured version   Visualization version   GIF version

Theorem sbrimvw 2091
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2308 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of GG. (Contributed by Wolf Lammen, 29-Jan-2024.)
Assertion
Ref Expression
sbrimvw ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbrimvw
StepHypRef Expression
1 sb6 2085 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
2 bi2.04 387 . . . 4 ((𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝑥 = 𝑦 → (𝜑𝜓)))
32albii 1817 . . 3 (∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
4 19.21v 1938 . . 3 (∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
51, 3, 43bitr2i 299 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
6 sb6 2085 . . 3 ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦𝜓))
76imbi2i 336 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
85, 7bitr4i 278 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  sbiedvw  2095  cbvralsvw  3323
  Copyright terms: Public domain W3C validator