MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrimvw Structured version   Visualization version   GIF version

Theorem sbrimvw 2094
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2301 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of Gino Giotto. (Contributed by Wolf Lammen, 29-Jan-2024.)
Assertion
Ref Expression
sbrimvw ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbrimvw
StepHypRef Expression
1 sb6 2088 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
2 bi2.04 389 . . . 4 ((𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝑥 = 𝑦 → (𝜑𝜓)))
32albii 1822 . . 3 (∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
4 19.21v 1942 . . 3 (∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
51, 3, 43bitr2i 299 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
6 sb6 2088 . . 3 ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦𝜓))
76imbi2i 336 . 2 ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))
85, 7bitr4i 277 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068
This theorem is referenced by:  sbiedvw  2096
  Copyright terms: Public domain W3C validator