Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimvw | Structured version Visualization version GIF version |
Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2301 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of Gino Giotto. (Contributed by Wolf Lammen, 29-Jan-2024.) |
Ref | Expression |
---|---|
sbrimvw | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
2 | bi2.04 389 | . . . 4 ⊢ ((𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
3 | 2 | albii 1822 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) |
4 | 19.21v 1942 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 = 𝑦 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
5 | 1, 3, 4 | 3bitr2i 299 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
6 | sb6 2088 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
7 | 6 | imbi2i 336 | . 2 ⊢ ((𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
8 | 5, 7 | bitr4i 277 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 |
This theorem is referenced by: sbiedvw 2096 |
Copyright terms: Public domain | W3C validator |