Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8 Structured version   Visualization version   GIF version

Theorem sb8 2539
 Description: Substitution of variable in universal quantifier. Usage of this theorem is discouraged because it depends on ax-13 2382. For a version requiring disjoint variables, but fewer axioms, see sb8v 2365. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb8.1 𝑦𝜑
Assertion
Ref Expression
sb8 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb8
StepHypRef Expression
1 sb8.1 . 2 𝑦𝜑
21nfs1 2509 . 2 𝑥[𝑦 / 𝑥]𝜑
3 sbequ12 2252 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
41, 2, 3cbval 2408 1 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  ∀wal 1536  Ⅎwnf 1785  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2382 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  sbhb  2543  sb8iota  6298  wl-sb8eut  34971
 Copyright terms: Public domain W3C validator