| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb8 | Structured version Visualization version GIF version | ||
| Description: Substitution of variable in universal quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. For a version requiring disjoint variables, but fewer axioms, see sb8f 2354. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb8.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| sb8 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfs1 2488 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 3 | sbequ12 2254 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbval 2398 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbhb 2521 sb8iota 6448 wl-sb8eut 37622 |
| Copyright terms: Public domain | W3C validator |