![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb8 | Structured version Visualization version GIF version |
Description: Substitution of variable in universal quantifier. Usage of this theorem is discouraged because it depends on ax-13 2366. For a version requiring disjoint variables, but fewer axioms, see sb8f 2344. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb8.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfs1 2482 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
3 | sbequ12 2236 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 1, 2, 3 | cbval 2392 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 Ⅎwnf 1778 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 ax-11 2147 ax-12 2164 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: sbhb 2515 sb8iota 6506 wl-sb8eut 37034 |
Copyright terms: Public domain | W3C validator |