MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp223 Structured version   Visualization version   GIF version

Theorem simp223 1314
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp223 ((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒)

Proof of Theorem simp223
StepHypRef Expression
1 simp23 1206 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant2 1132 1 ((𝜂 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) ∧ 𝜁) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  4atexlemswapqr  38004  4atexlemcnd  38013  cdleme26eALTN  38302  cdleme27a  38308  cdlemk23-3  38843  cdlemk25-3  38845  cdlemk27-3  38848
  Copyright terms: Public domain W3C validator