Proof of Theorem 4atexlemswapqr
| Step | Hyp | Ref
| Expression |
| 1 | | 4thatlem.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 2 | | simp11 1204 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 3 | 1, 2 | sylbi 217 |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 4 | 1 | 4atexlempw 40073 |
. . 3
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 5 | | simp22 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
| 6 | | 3simpa 1148 |
. . . . 5
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 8 | 1, 7 | sylbi 217 |
. . 3
⊢ (𝜑 → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
| 9 | 3, 4, 8 | 3jca 1128 |
. 2
⊢ (𝜑 → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) |
| 10 | 1 | 4atexlems 40076 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 11 | 1 | 4atexlemq 40075 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 12 | | simp13r 1290 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ 𝑊) |
| 13 | 1, 12 | sylbi 217 |
. . . 4
⊢ (𝜑 → ¬ 𝑄 ≤ 𝑊) |
| 14 | 1 | 4atexlemkc 40082 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ CvLat) |
| 15 | 1 | 4atexlemp 40074 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 16 | 8 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| 17 | 1 | 4atexlempnq 40079 |
. . . . 5
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 18 | | simp223 1317 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
| 19 | 1, 18 | sylbi 217 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
| 20 | | 4thatlemslps.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
| 21 | | 4thatlemslps.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
| 22 | 20, 21 | cvlsupr7 39371 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) |
| 23 | 14, 15, 11, 16, 17, 19, 22 | syl132anc 1390 |
. . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) |
| 24 | 11, 13, 23 | 3jca 1128 |
. . 3
⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))) |
| 25 | 1 | 4atexlemt 40077 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 26 | | 4thatlemsw.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 27 | 20, 21 | cvlsupr8 39372 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
| 28 | 14, 15, 11, 16, 17, 19, 27 | syl132anc 1390 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
| 29 | 28 | oveq1d 7425 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
| 30 | 26, 29 | eqtrid 2783 |
. . . . . 6
⊢ (𝜑 → 𝑈 = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
| 31 | 30 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇)) |
| 32 | 1 | 4atexlemutvt 40078 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
| 33 | 31, 32 | eqtr3d 2773 |
. . . 4
⊢ (𝜑 → (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
| 34 | 25, 33 | jca 511 |
. . 3
⊢ (𝜑 → (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) |
| 35 | 10, 24, 34 | 3jca 1128 |
. 2
⊢ (𝜑 → (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇)))) |
| 36 | 20, 21 | cvlsupr5 39369 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑃) |
| 37 | 36 | necomd 2988 |
. . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃 ≠ 𝑅) |
| 38 | 14, 15, 11, 16, 17, 19, 37 | syl132anc 1390 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑅) |
| 39 | 1 | 4atexlemnslpq 40080 |
. . . 4
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 40 | 28 | eqcomd 2742 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑄)) |
| 41 | 40 | breq2d 5136 |
. . . 4
⊢ (𝜑 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑃 ∨ 𝑄))) |
| 42 | 39, 41 | mtbird 325 |
. . 3
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)) |
| 43 | 38, 42 | jca 511 |
. 2
⊢ (𝜑 → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) |
| 44 | 9, 35, 43 | 3jca 1128 |
1
⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) |