Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Structured version   Visualization version   GIF version

Theorem 4atexlemswapqr 36133
Description: Lemma for 4atexlem7 36145. Swap 𝑄 and 𝑅, so that theorems involving 𝐶 can be reused for 𝐷. Note that 𝑈 must be expanded because it involves 𝑄. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlemslps.l = (le‘𝐾)
4thatlemslps.j = (join‘𝐾)
4thatlemslps.a 𝐴 = (Atoms‘𝐾)
4thatlemsw.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
4atexlemswapqr (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 simp11 1264 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31, 2sylbi 209 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
414atexlempw 36119 . . 3 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp22 1268 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
6 3simpa 1182 . . . . 5 ((𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
75, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
81, 7sylbi 209 . . 3 (𝜑 → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
93, 4, 83jca 1162 . 2 (𝜑 → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)))
1014atexlems 36122 . . 3 (𝜑𝑆𝐴)
1114atexlemq 36121 . . . 4 (𝜑𝑄𝐴)
12 simp13r 1392 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 𝑊)
131, 12sylbi 209 . . . 4 (𝜑 → ¬ 𝑄 𝑊)
1414atexlemkc 36128 . . . . 5 (𝜑𝐾 ∈ CvLat)
1514atexlemp 36120 . . . . 5 (𝜑𝑃𝐴)
168simpld 490 . . . . 5 (𝜑𝑅𝐴)
1714atexlempnq 36125 . . . . 5 (𝜑𝑃𝑄)
18 simp223 1419 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
191, 18sylbi 209 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
20 4thatlemslps.a . . . . . 6 𝐴 = (Atoms‘𝐾)
21 4thatlemslps.j . . . . . 6 = (join‘𝐾)
2220, 21cvlsupr7 35418 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
2314, 15, 11, 16, 17, 19, 22syl132anc 1511 . . . 4 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
2411, 13, 233jca 1162 . . 3 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)))
2514atexlemt 36123 . . . 4 (𝜑𝑇𝐴)
26 4thatlemsw.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
2720, 21cvlsupr8 35419 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑃 𝑅))
2814, 15, 11, 16, 17, 19, 27syl132anc 1511 . . . . . . . 8 (𝜑 → (𝑃 𝑄) = (𝑃 𝑅))
2928oveq1d 6925 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) = ((𝑃 𝑅) 𝑊))
3026, 29syl5eq 2873 . . . . . 6 (𝜑𝑈 = ((𝑃 𝑅) 𝑊))
3130oveq1d 6925 . . . . 5 (𝜑 → (𝑈 𝑇) = (((𝑃 𝑅) 𝑊) 𝑇))
3214atexlemutvt 36124 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
3331, 32eqtr3d 2863 . . . 4 (𝜑 → (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))
3425, 33jca 507 . . 3 (𝜑 → (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇)))
3510, 24, 343jca 1162 . 2 (𝜑 → (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))))
3620, 21cvlsupr5 35416 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑃)
3736necomd 3054 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃𝑅)
3814, 15, 11, 16, 17, 19, 37syl132anc 1511 . . 3 (𝜑𝑃𝑅)
3914atexlemnslpq 36126 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
4028eqcomd 2831 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑃 𝑄))
4140breq2d 4887 . . . 4 (𝜑 → (𝑆 (𝑃 𝑅) ↔ 𝑆 (𝑃 𝑄)))
4239, 41mtbird 317 . . 3 (𝜑 → ¬ 𝑆 (𝑃 𝑅))
4338, 42jca 507 . 2 (𝜑 → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅)))
449, 35, 433jca 1162 1 (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4875  cfv 6127  (class class class)co 6910  lecple 16319  joincjn 17304  Atomscatm 35333  CvLatclc 35335  HLchlt 35420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-lat 17406  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421
This theorem is referenced by:  4atexlemex4  36143
  Copyright terms: Public domain W3C validator