Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Structured version   Visualization version   GIF version

Theorem 4atexlemswapqr 40172
Description: Lemma for 4atexlem7 40184. Swap 𝑄 and 𝑅, so that theorems involving 𝐶 can be reused for 𝐷. Note that 𝑈 must be expanded because it involves 𝑄. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlemslps.l = (le‘𝐾)
4thatlemslps.j = (join‘𝐾)
4thatlemslps.a 𝐴 = (Atoms‘𝐾)
4thatlemsw.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
4atexlemswapqr (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31, 2sylbi 217 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
414atexlempw 40158 . . 3 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp22 1208 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
6 3simpa 1148 . . . . 5 ((𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
75, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
81, 7sylbi 217 . . 3 (𝜑 → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
93, 4, 83jca 1128 . 2 (𝜑 → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)))
1014atexlems 40161 . . 3 (𝜑𝑆𝐴)
1114atexlemq 40160 . . . 4 (𝜑𝑄𝐴)
12 simp13r 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 𝑊)
131, 12sylbi 217 . . . 4 (𝜑 → ¬ 𝑄 𝑊)
1414atexlemkc 40167 . . . . 5 (𝜑𝐾 ∈ CvLat)
1514atexlemp 40159 . . . . 5 (𝜑𝑃𝐴)
168simpld 494 . . . . 5 (𝜑𝑅𝐴)
1714atexlempnq 40164 . . . . 5 (𝜑𝑃𝑄)
18 simp223 1317 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
191, 18sylbi 217 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
20 4thatlemslps.a . . . . . 6 𝐴 = (Atoms‘𝐾)
21 4thatlemslps.j . . . . . 6 = (join‘𝐾)
2220, 21cvlsupr7 39457 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
2314, 15, 11, 16, 17, 19, 22syl132anc 1390 . . . 4 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
2411, 13, 233jca 1128 . . 3 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)))
2514atexlemt 40162 . . . 4 (𝜑𝑇𝐴)
26 4thatlemsw.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
2720, 21cvlsupr8 39458 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑃 𝑅))
2814, 15, 11, 16, 17, 19, 27syl132anc 1390 . . . . . . . 8 (𝜑 → (𝑃 𝑄) = (𝑃 𝑅))
2928oveq1d 7370 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) = ((𝑃 𝑅) 𝑊))
3026, 29eqtrid 2780 . . . . . 6 (𝜑𝑈 = ((𝑃 𝑅) 𝑊))
3130oveq1d 7370 . . . . 5 (𝜑 → (𝑈 𝑇) = (((𝑃 𝑅) 𝑊) 𝑇))
3214atexlemutvt 40163 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
3331, 32eqtr3d 2770 . . . 4 (𝜑 → (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))
3425, 33jca 511 . . 3 (𝜑 → (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇)))
3510, 24, 343jca 1128 . 2 (𝜑 → (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))))
3620, 21cvlsupr5 39455 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑃)
3736necomd 2985 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃𝑅)
3814, 15, 11, 16, 17, 19, 37syl132anc 1390 . . 3 (𝜑𝑃𝑅)
3914atexlemnslpq 40165 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
4028eqcomd 2739 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑃 𝑄))
4140breq2d 5107 . . . 4 (𝜑 → (𝑆 (𝑃 𝑅) ↔ 𝑆 (𝑃 𝑄)))
4239, 41mtbird 325 . . 3 (𝜑 → ¬ 𝑆 (𝑃 𝑅))
4338, 42jca 511 . 2 (𝜑 → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅)))
449, 35, 433jca 1128 1 (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  lecple 17178  joincjn 18227  Atomscatm 39372  CvLatclc 39374  HLchlt 39459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18210  df-poset 18229  df-plt 18244  df-lub 18260  df-glb 18261  df-join 18262  df-meet 18263  df-p0 18339  df-lat 18348  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460
This theorem is referenced by:  4atexlemex4  40182
  Copyright terms: Public domain W3C validator