Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Structured version   Visualization version   GIF version

Theorem 4atexlemswapqr 38526
Description: Lemma for 4atexlem7 38538. Swap 𝑄 and 𝑅, so that theorems involving 𝐶 can be reused for 𝐷. Note that 𝑈 must be expanded because it involves 𝑄. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlemslps.l = (le‘𝐾)
4thatlemslps.j = (join‘𝐾)
4thatlemslps.a 𝐴 = (Atoms‘𝐾)
4thatlemsw.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
4atexlemswapqr (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 simp11 1203 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31, 2sylbi 216 . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
414atexlempw 38512 . . 3 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp22 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)))
6 3simpa 1148 . . . . 5 ((𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
75, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
81, 7sylbi 216 . . 3 (𝜑 → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
93, 4, 83jca 1128 . 2 (𝜑 → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)))
1014atexlems 38515 . . 3 (𝜑𝑆𝐴)
1114atexlemq 38514 . . . 4 (𝜑𝑄𝐴)
12 simp13r 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 𝑊)
131, 12sylbi 216 . . . 4 (𝜑 → ¬ 𝑄 𝑊)
1414atexlemkc 38521 . . . . 5 (𝜑𝐾 ∈ CvLat)
1514atexlemp 38513 . . . . 5 (𝜑𝑃𝐴)
168simpld 495 . . . . 5 (𝜑𝑅𝐴)
1714atexlempnq 38518 . . . . 5 (𝜑𝑃𝑄)
18 simp223 1316 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
191, 18sylbi 216 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
20 4thatlemslps.a . . . . . 6 𝐴 = (Atoms‘𝐾)
21 4thatlemslps.j . . . . . 6 = (join‘𝐾)
2220, 21cvlsupr7 37810 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
2314, 15, 11, 16, 17, 19, 22syl132anc 1388 . . . 4 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
2411, 13, 233jca 1128 . . 3 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)))
2514atexlemt 38516 . . . 4 (𝜑𝑇𝐴)
26 4thatlemsw.u . . . . . . 7 𝑈 = ((𝑃 𝑄) 𝑊)
2720, 21cvlsupr8 37811 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑃 𝑅))
2814, 15, 11, 16, 17, 19, 27syl132anc 1388 . . . . . . . 8 (𝜑 → (𝑃 𝑄) = (𝑃 𝑅))
2928oveq1d 7372 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) = ((𝑃 𝑅) 𝑊))
3026, 29eqtrid 2788 . . . . . 6 (𝜑𝑈 = ((𝑃 𝑅) 𝑊))
3130oveq1d 7372 . . . . 5 (𝜑 → (𝑈 𝑇) = (((𝑃 𝑅) 𝑊) 𝑇))
3214atexlemutvt 38517 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
3331, 32eqtr3d 2778 . . . 4 (𝜑 → (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))
3425, 33jca 512 . . 3 (𝜑 → (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇)))
3510, 24, 343jca 1128 . 2 (𝜑 → (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))))
3620, 21cvlsupr5 37808 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑃)
3736necomd 2999 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃𝑅)
3814, 15, 11, 16, 17, 19, 37syl132anc 1388 . . 3 (𝜑𝑃𝑅)
3914atexlemnslpq 38519 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
4028eqcomd 2742 . . . . 5 (𝜑 → (𝑃 𝑅) = (𝑃 𝑄))
4140breq2d 5117 . . . 4 (𝜑 → (𝑆 (𝑃 𝑅) ↔ 𝑆 (𝑃 𝑄)))
4239, 41mtbird 324 . . 3 (𝜑 → ¬ 𝑆 (𝑃 𝑅))
4338, 42jca 512 . 2 (𝜑 → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅)))
449, 35, 433jca 1128 1 (𝜑 → (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ (𝑆𝐴 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊 ∧ (𝑃 𝑄) = (𝑅 𝑄)) ∧ (𝑇𝐴 ∧ (((𝑃 𝑅) 𝑊) 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  lecple 17140  joincjn 18200  Atomscatm 37725  CvLatclc 37727  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  4atexlemex4  38536
  Copyright terms: Public domain W3C validator