Proof of Theorem 4atexlemswapqr
Step | Hyp | Ref
| Expression |
1 | | 4thatlem.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
2 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
3 | 1, 2 | sylbi 216 |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | 1 | 4atexlempw 38063 |
. . 3
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
5 | | simp22 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) |
6 | | 3simpa 1147 |
. . . . 5
⊢ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
8 | 1, 7 | sylbi 216 |
. . 3
⊢ (𝜑 → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
9 | 3, 4, 8 | 3jca 1127 |
. 2
⊢ (𝜑 → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) |
10 | 1 | 4atexlems 38066 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
11 | 1 | 4atexlemq 38065 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
12 | | simp13r 1288 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ 𝑊) |
13 | 1, 12 | sylbi 216 |
. . . 4
⊢ (𝜑 → ¬ 𝑄 ≤ 𝑊) |
14 | 1 | 4atexlemkc 38072 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ CvLat) |
15 | 1 | 4atexlemp 38064 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
16 | 8 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ 𝐴) |
17 | 1 | 4atexlempnq 38069 |
. . . . 5
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
18 | | simp223 1315 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
19 | 1, 18 | sylbi 216 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) |
20 | | 4thatlemslps.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
21 | | 4thatlemslps.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
22 | 20, 21 | cvlsupr7 37362 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) |
23 | 14, 15, 11, 16, 17, 19, 22 | syl132anc 1387 |
. . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) |
24 | 11, 13, 23 | 3jca 1127 |
. . 3
⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))) |
25 | 1 | 4atexlemt 38067 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
26 | | 4thatlemsw.u |
. . . . . . 7
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
27 | 20, 21 | cvlsupr8 37363 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
28 | 14, 15, 11, 16, 17, 19, 27 | syl132anc 1387 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
29 | 28 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
30 | 26, 29 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → 𝑈 = ((𝑃 ∨ 𝑅) ∧ 𝑊)) |
31 | 30 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇)) |
32 | 1 | 4atexlemutvt 38068 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
33 | 31, 32 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
34 | 25, 33 | jca 512 |
. . 3
⊢ (𝜑 → (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) |
35 | 10, 24, 34 | 3jca 1127 |
. 2
⊢ (𝜑 → (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇)))) |
36 | 20, 21 | cvlsupr5 37360 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑃) |
37 | 36 | necomd 2999 |
. . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃 ≠ 𝑅) |
38 | 14, 15, 11, 16, 17, 19, 37 | syl132anc 1387 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑅) |
39 | 1 | 4atexlemnslpq 38070 |
. . . 4
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
40 | 28 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑄)) |
41 | 40 | breq2d 5086 |
. . . 4
⊢ (𝜑 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑃 ∨ 𝑄))) |
42 | 39, 41 | mtbird 325 |
. . 3
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)) |
43 | 38, 42 | jca 512 |
. 2
⊢ (𝜑 → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅))) |
44 | 9, 35, 43 | 3jca 1127 |
1
⊢ (𝜑 → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ 𝑊) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅)))) |