Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemswapqr Structured version   Visualization version   GIF version

Theorem 4atexlemswapqr 38922
Description: Lemma for 4atexlem7 38934. Swap 𝑄 and 𝑅, so that theorems involving 𝐢 can be reused for 𝐷. Note that π‘ˆ must be expanded because it involves 𝑄. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlemslps.l ≀ = (leβ€˜πΎ)
4thatlemslps.j ∨ = (joinβ€˜πΎ)
4thatlemslps.a 𝐴 = (Atomsβ€˜πΎ)
4thatlemsw.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
4atexlemswapqr (πœ‘ β†’ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))))

Proof of Theorem 4atexlemswapqr
StepHypRef Expression
1 4thatlem.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
2 simp11 1203 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
31, 2sylbi 216 . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
414atexlempw 38908 . . 3 (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
5 simp22 1207 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)))
6 3simpa 1148 . . . . 5 ((𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
75, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
81, 7sylbi 216 . . 3 (πœ‘ β†’ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š))
93, 4, 83jca 1128 . 2 (πœ‘ β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)))
1014atexlems 38911 . . 3 (πœ‘ β†’ 𝑆 ∈ 𝐴)
1114atexlemq 38910 . . . 4 (πœ‘ β†’ 𝑄 ∈ 𝐴)
12 simp13r 1289 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑄 ≀ π‘Š)
131, 12sylbi 216 . . . 4 (πœ‘ β†’ Β¬ 𝑄 ≀ π‘Š)
1414atexlemkc 38917 . . . . 5 (πœ‘ β†’ 𝐾 ∈ CvLat)
1514atexlemp 38909 . . . . 5 (πœ‘ β†’ 𝑃 ∈ 𝐴)
168simpld 495 . . . . 5 (πœ‘ β†’ 𝑅 ∈ 𝐴)
1714atexlempnq 38914 . . . . 5 (πœ‘ β†’ 𝑃 β‰  𝑄)
18 simp223 1316 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
191, 18sylbi 216 . . . . 5 (πœ‘ β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
20 4thatlemslps.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
21 4thatlemslps.j . . . . . 6 ∨ = (joinβ€˜πΎ)
2220, 21cvlsupr7 38206 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
2314, 15, 11, 16, 17, 19, 22syl132anc 1388 . . . 4 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
2411, 13, 233jca 1128 . . 3 (πœ‘ β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)))
2514atexlemt 38912 . . . 4 (πœ‘ β†’ 𝑇 ∈ 𝐴)
26 4thatlemsw.u . . . . . . 7 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2720, 21cvlsupr8 38207 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))
2814, 15, 11, 16, 17, 19, 27syl132anc 1388 . . . . . . . 8 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))
2928oveq1d 7420 . . . . . . 7 (πœ‘ β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) = ((𝑃 ∨ 𝑅) ∧ π‘Š))
3026, 29eqtrid 2784 . . . . . 6 (πœ‘ β†’ π‘ˆ = ((𝑃 ∨ 𝑅) ∧ π‘Š))
3130oveq1d 7420 . . . . 5 (πœ‘ β†’ (π‘ˆ ∨ 𝑇) = (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇))
3214atexlemutvt 38913 . . . . 5 (πœ‘ β†’ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))
3331, 32eqtr3d 2774 . . . 4 (πœ‘ β†’ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))
3425, 33jca 512 . . 3 (πœ‘ β†’ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇)))
3510, 24, 343jca 1128 . 2 (πœ‘ β†’ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))))
3620, 21cvlsupr5 38204 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑅 β‰  𝑃)
3736necomd 2996 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑃 β‰  𝑅)
3814, 15, 11, 16, 17, 19, 37syl132anc 1388 . . 3 (πœ‘ β†’ 𝑃 β‰  𝑅)
3914atexlemnslpq 38915 . . . 4 (πœ‘ β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
4028eqcomd 2738 . . . . 5 (πœ‘ β†’ (𝑃 ∨ 𝑅) = (𝑃 ∨ 𝑄))
4140breq2d 5159 . . . 4 (πœ‘ β†’ (𝑆 ≀ (𝑃 ∨ 𝑅) ↔ 𝑆 ≀ (𝑃 ∨ 𝑄)))
4239, 41mtbird 324 . . 3 (πœ‘ β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))
4338, 42jca 512 . 2 (πœ‘ β†’ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅)))
449, 35, 433jca 1128 1 (πœ‘ β†’ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ (((𝑃 ∨ 𝑅) ∧ π‘Š) ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  lecple 17200  joincjn 18260  Atomscatm 38121  CvLatclc 38123  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  4atexlemex4  38932
  Copyright terms: Public domain W3C validator