Proof of Theorem cdlemk25-3
Step | Hyp | Ref
| Expression |
1 | | simpl1 1193 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇))) |
2 | | simpl2 1194 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵)))) |
3 | | simpl31 1256 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) |
4 | | simpl32 1257 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → (𝑅‘𝐺) ≠ (𝑅‘𝐷)) |
5 | | simpr 488 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → (𝑅‘𝐶) = (𝑅‘𝐷)) |
6 | 4, 5 | jca 515 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐶) = (𝑅‘𝐷))) |
7 | | simpl33 1258 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥))) |
8 | | cdlemk3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
9 | | cdlemk3.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
10 | | cdlemk3.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
11 | | cdlemk3.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
12 | | cdlemk3.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
13 | | cdlemk3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | cdlemk3.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
15 | | cdlemk3.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
16 | | cdlemk3.s |
. . . 4
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
17 | | cdlemk3.u1 |
. . . 4
⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
18 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk24-3 38691 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |
19 | 1, 2, 3, 6, 7, 18 | syl113anc 1384 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) = (𝑅‘𝐷)) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |
20 | | simp11 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | | simp121 1307 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐹 ∈ 𝑇) |
22 | | simp122 1308 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐷 ∈ 𝑇) |
23 | 20, 21, 22 | 3jca 1130 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) |
24 | 23 | adantr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) |
25 | | simp123 1309 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝑁 ∈ 𝑇) |
26 | | simp131 1310 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐺 ∈ 𝑇) |
27 | | simp132 1311 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐶 ∈ 𝑇) |
28 | 25, 26, 27 | 3jca 1130 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇)) |
29 | | simp21 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
30 | | simp221 1316 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
31 | 28, 29, 30 | 3jca 1130 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
32 | 31 | adantr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
33 | | simp222 1317 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐹 ≠ ( I ↾ 𝐵)) |
34 | | simp223 1318 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐷 ≠ ( I ↾ 𝐵)) |
35 | | simp231 1319 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐺 ≠ ( I ↾ 𝐵)) |
36 | 33, 34, 35 | 3jca 1130 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
37 | 36 | adantr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
38 | | simp232 1320 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐶 ≠ ( I ↾ 𝐵)) |
39 | | simp311 1322 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐺) ≠ (𝑅‘𝐶)) |
40 | | simp312 1323 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐶) ≠ (𝑅‘𝐹)) |
41 | 38, 39, 40 | 3jca 1130 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹))) |
42 | 41 | adantr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹))) |
43 | | simp313 1324 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐷) ≠ (𝑅‘𝐹)) |
44 | 43 | adantr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → (𝑅‘𝐷) ≠ (𝑅‘𝐹)) |
45 | | simpl32 1257 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → (𝑅‘𝐺) ≠ (𝑅‘𝐷)) |
46 | | simpr 488 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → (𝑅‘𝐶) ≠ (𝑅‘𝐷)) |
47 | 44, 45, 46 | 3jca 1130 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷))) |
48 | 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 | cdlemk22-3 38689 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝐶 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |
49 | 24, 32, 37, 42, 47, 48 | syl113anc 1384 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐷)) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |
50 | 19, 49 | pm2.61dane 3032 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |