Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 40029
Description: Lemma for 4atexlem7 40032. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
4thatlem0.d 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemcnd (𝜑𝐶𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 40024 . . 3 (𝜑𝑇 𝑊)
10 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 40027 . . 3 (𝜑 → ¬ 𝐶 𝑊)
12 nbrne2 5186 . . 3 ((𝑇 𝑊 ∧ ¬ 𝐶 𝑊) → 𝑇𝐶)
139, 11, 12syl2anc 583 . 2 (𝜑𝑇𝐶)
1414atexlemk 40004 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
1514atexlemq 40008 . . . . . . . . 9 (𝜑𝑄𝐴)
1614atexlemt 40010 . . . . . . . . 9 (𝜑𝑇𝐴)
173, 5hlatjcom 39324 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
1814, 15, 16, 17syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
19 simp221 1314 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
201, 19sylbi 217 . . . . . . . . 9 (𝜑𝑅𝐴)
213, 5hlatjcom 39324 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) = (𝑇 𝑅))
2214, 20, 16, 21syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑅 𝑇) = (𝑇 𝑅))
2318, 22oveq12d 7466 . . . . . . 7 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) = ((𝑇 𝑄) (𝑇 𝑅)))
2414atexlemkc 40015 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
2514atexlemp 40007 . . . . . . . . 9 (𝜑𝑃𝐴)
2614atexlempnq 40012 . . . . . . . . 9 (𝜑𝑃𝑄)
27 simp223 1316 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
281, 27sylbi 217 . . . . . . . . 9 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
295, 3cvlsupr6 39303 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑄)
3029necomd 3002 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1388 . . . . . . . 8 (𝜑𝑄𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 40025 . . . . . . . . 9 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
335, 3cvlsupr7 39304 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1388 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
353, 5hlatjcom 39324 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
3614, 15, 20, 35syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3734, 36eqtr4d 2783 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) = (𝑄 𝑅))
3837breq2d 5178 . . . . . . . . 9 (𝜑 → (𝑇 (𝑃 𝑄) ↔ 𝑇 (𝑄 𝑅)))
3932, 38mtbid 324 . . . . . . . 8 (𝜑 → ¬ 𝑇 (𝑄 𝑅))
402, 3, 4, 52llnma2 39746 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1388 . . . . . . 7 (𝜑 → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4223, 41eqtr2d 2781 . . . . . 6 (𝜑𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4342adantr 480 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4414atexlemkl 40014 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
451, 3, 54atexlemqtb 40018 . . . . . . . . . 10 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
461, 3, 54atexlempsb 40017 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
47 eqid 2740 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4847, 2, 4latmle1 18534 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
4944, 45, 46, 48syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
5010, 49eqbrtrid 5201 . . . . . . . 8 (𝜑𝐶 (𝑄 𝑇))
5150adantr 480 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑄 𝑇))
52 simpr 484 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
5447, 3, 5hlatjcl 39323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
5514, 20, 16, 54syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝑅 𝑇) ∈ (Base‘𝐾))
5647, 2, 4latmle1 18534 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5744, 55, 46, 56syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5853, 57eqbrtrid 5201 . . . . . . . . 9 (𝜑𝐷 (𝑅 𝑇))
5958adantr 480 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐷 (𝑅 𝑇))
6052, 59eqbrtrd 5188 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑅 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 40026 . . . . . . . . . 10 (𝜑𝐶𝐴)
6247, 5atbase 39245 . . . . . . . . . 10 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6361, 62syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐾))
6447, 2, 4latlem12 18536 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑅 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6544, 63, 45, 55, 64syl13anc 1372 . . . . . . . 8 (𝜑 → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6665adantr 480 . . . . . . 7 ((𝜑𝐶 = 𝐷) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6751, 60, 66mpbi2and 711 . . . . . 6 ((𝜑𝐶 = 𝐷) → 𝐶 ((𝑄 𝑇) (𝑅 𝑇)))
68 hlatl 39316 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
7042, 16eqeltrrd 2845 . . . . . . . 8 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴)
712, 5atcmp 39267 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴 ∧ ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7269, 61, 70, 71syl3anc 1371 . . . . . . 7 (𝜑 → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7372adantr 480 . . . . . 6 ((𝜑𝐶 = 𝐷) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7467, 73mpbid 232 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = ((𝑄 𝑇) (𝑅 𝑇)))
7543, 74eqtr4d 2783 . . . 4 ((𝜑𝐶 = 𝐷) → 𝑇 = 𝐶)
7675ex 412 . . 3 (𝜑 → (𝐶 = 𝐷𝑇 = 𝐶))
7776necon3d 2967 . 2 (𝜑 → (𝑇𝐶𝐶𝐷))
7813, 77mpd 15 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  AtLatcal 39220  CvLatclc 39221  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lhyp 39945
This theorem is referenced by:  4atexlemex4  40030
  Copyright terms: Public domain W3C validator