Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 37368
Description: Lemma for 4atexlem7 37371. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
4thatlem0.d 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemcnd (𝜑𝐶𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 37363 . . 3 (𝜑𝑇 𝑊)
10 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 37366 . . 3 (𝜑 → ¬ 𝐶 𝑊)
12 nbrne2 5050 . . 3 ((𝑇 𝑊 ∧ ¬ 𝐶 𝑊) → 𝑇𝐶)
139, 11, 12syl2anc 587 . 2 (𝜑𝑇𝐶)
1414atexlemk 37343 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
1514atexlemq 37347 . . . . . . . . 9 (𝜑𝑄𝐴)
1614atexlemt 37349 . . . . . . . . 9 (𝜑𝑇𝐴)
173, 5hlatjcom 36664 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
1814, 15, 16, 17syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
19 simp221 1311 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
201, 19sylbi 220 . . . . . . . . 9 (𝜑𝑅𝐴)
213, 5hlatjcom 36664 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) = (𝑇 𝑅))
2214, 20, 16, 21syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑅 𝑇) = (𝑇 𝑅))
2318, 22oveq12d 7153 . . . . . . 7 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) = ((𝑇 𝑄) (𝑇 𝑅)))
2414atexlemkc 37354 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
2514atexlemp 37346 . . . . . . . . 9 (𝜑𝑃𝐴)
2614atexlempnq 37351 . . . . . . . . 9 (𝜑𝑃𝑄)
27 simp223 1313 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
281, 27sylbi 220 . . . . . . . . 9 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
295, 3cvlsupr6 36643 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑄)
3029necomd 3042 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1385 . . . . . . . 8 (𝜑𝑄𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 37364 . . . . . . . . 9 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
335, 3cvlsupr7 36644 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1385 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
353, 5hlatjcom 36664 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
3614, 15, 20, 35syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3734, 36eqtr4d 2836 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) = (𝑄 𝑅))
3837breq2d 5042 . . . . . . . . 9 (𝜑 → (𝑇 (𝑃 𝑄) ↔ 𝑇 (𝑄 𝑅)))
3932, 38mtbid 327 . . . . . . . 8 (𝜑 → ¬ 𝑇 (𝑄 𝑅))
402, 3, 4, 52llnma2 37085 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1385 . . . . . . 7 (𝜑 → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4223, 41eqtr2d 2834 . . . . . 6 (𝜑𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4342adantr 484 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4414atexlemkl 37353 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
451, 3, 54atexlemqtb 37357 . . . . . . . . . 10 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
461, 3, 54atexlempsb 37356 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
47 eqid 2798 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4847, 2, 4latmle1 17678 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
4944, 45, 46, 48syl3anc 1368 . . . . . . . . 9 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
5010, 49eqbrtrid 5065 . . . . . . . 8 (𝜑𝐶 (𝑄 𝑇))
5150adantr 484 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑄 𝑇))
52 simpr 488 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
5447, 3, 5hlatjcl 36663 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
5514, 20, 16, 54syl3anc 1368 . . . . . . . . . . 11 (𝜑 → (𝑅 𝑇) ∈ (Base‘𝐾))
5647, 2, 4latmle1 17678 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5744, 55, 46, 56syl3anc 1368 . . . . . . . . . 10 (𝜑 → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5853, 57eqbrtrid 5065 . . . . . . . . 9 (𝜑𝐷 (𝑅 𝑇))
5958adantr 484 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐷 (𝑅 𝑇))
6052, 59eqbrtrd 5052 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑅 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 37365 . . . . . . . . . 10 (𝜑𝐶𝐴)
6247, 5atbase 36585 . . . . . . . . . 10 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6361, 62syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐾))
6447, 2, 4latlem12 17680 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑅 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6544, 63, 45, 55, 64syl13anc 1369 . . . . . . . 8 (𝜑 → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6665adantr 484 . . . . . . 7 ((𝜑𝐶 = 𝐷) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6751, 60, 66mpbi2and 711 . . . . . 6 ((𝜑𝐶 = 𝐷) → 𝐶 ((𝑄 𝑇) (𝑅 𝑇)))
68 hlatl 36656 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
7042, 16eqeltrrd 2891 . . . . . . . 8 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴)
712, 5atcmp 36607 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴 ∧ ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7269, 61, 70, 71syl3anc 1368 . . . . . . 7 (𝜑 → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7372adantr 484 . . . . . 6 ((𝜑𝐶 = 𝐷) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7467, 73mpbid 235 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = ((𝑄 𝑇) (𝑅 𝑇)))
7543, 74eqtr4d 2836 . . . 4 ((𝜑𝐶 = 𝐷) → 𝑇 = 𝐶)
7675ex 416 . . 3 (𝜑 → (𝐶 = 𝐷𝑇 = 𝐶))
7776necon3d 3008 . 2 (𝜑 → (𝑇𝐶𝐶𝐷))
7813, 77mpd 15 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36559  AtLatcal 36560  CvLatclc 36561  HLchlt 36646  LHypclh 37280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lhyp 37284
This theorem is referenced by:  4atexlemex4  37369
  Copyright terms: Public domain W3C validator