Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 38931
Description: Lemma for 4atexlem7 38934. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
4thatlem0.c 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
4thatlem0.d 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
Assertion
Ref Expression
4atexlemcnd (πœ‘ β†’ 𝐢 β‰  𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
2 4thatlem0.l . . . 4 ≀ = (leβ€˜πΎ)
3 4thatlem0.j . . . 4 ∨ = (joinβ€˜πΎ)
4 4thatlem0.m . . . 4 ∧ = (meetβ€˜πΎ)
5 4thatlem0.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 4thatlem0.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 4thatlem0.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 38926 . . 3 (πœ‘ β†’ 𝑇 ≀ π‘Š)
10 4thatlem0.c . . . 4 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 38929 . . 3 (πœ‘ β†’ Β¬ 𝐢 ≀ π‘Š)
12 nbrne2 5167 . . 3 ((𝑇 ≀ π‘Š ∧ Β¬ 𝐢 ≀ π‘Š) β†’ 𝑇 β‰  𝐢)
139, 11, 12syl2anc 584 . 2 (πœ‘ β†’ 𝑇 β‰  𝐢)
1414atexlemk 38906 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ HL)
1514atexlemq 38910 . . . . . . . . 9 (πœ‘ β†’ 𝑄 ∈ 𝐴)
1614atexlemt 38912 . . . . . . . . 9 (πœ‘ β†’ 𝑇 ∈ 𝐴)
173, 5hlatjcom 38226 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑄))
1814, 15, 16, 17syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑄))
19 simp221 1314 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
201, 19sylbi 216 . . . . . . . . 9 (πœ‘ β†’ 𝑅 ∈ 𝐴)
213, 5hlatjcom 38226 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑅 ∨ 𝑇) = (𝑇 ∨ 𝑅))
2214, 20, 16, 21syl3anc 1371 . . . . . . . 8 (πœ‘ β†’ (𝑅 ∨ 𝑇) = (𝑇 ∨ 𝑅))
2318, 22oveq12d 7423 . . . . . . 7 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) = ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)))
2414atexlemkc 38917 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ CvLat)
2514atexlemp 38909 . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ 𝐴)
2614atexlempnq 38914 . . . . . . . . 9 (πœ‘ β†’ 𝑃 β‰  𝑄)
27 simp223 1316 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
281, 27sylbi 216 . . . . . . . . 9 (πœ‘ β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
295, 3cvlsupr6 38205 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑅 β‰  𝑄)
3029necomd 2996 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑄 β‰  𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1388 . . . . . . . 8 (πœ‘ β†’ 𝑄 β‰  𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 38927 . . . . . . . . 9 (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
335, 3cvlsupr7 38206 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1388 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
353, 5hlatjcom 38226 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
3614, 15, 20, 35syl3anc 1371 . . . . . . . . . . 11 (πœ‘ β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
3734, 36eqtr4d 2775 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅))
3837breq2d 5159 . . . . . . . . 9 (πœ‘ β†’ (𝑇 ≀ (𝑃 ∨ 𝑄) ↔ 𝑇 ≀ (𝑄 ∨ 𝑅)))
3932, 38mtbid 323 . . . . . . . 8 (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑄 ∨ 𝑅))
402, 3, 4, 52llnma2 38648 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ (𝑄 ∨ 𝑅))) β†’ ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1388 . . . . . . 7 (πœ‘ β†’ ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)) = 𝑇)
4223, 41eqtr2d 2773 . . . . . 6 (πœ‘ β†’ 𝑇 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
4342adantr 481 . . . . 5 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝑇 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
4414atexlemkl 38916 . . . . . . . . . 10 (πœ‘ β†’ 𝐾 ∈ Lat)
451, 3, 54atexlemqtb 38920 . . . . . . . . . 10 (πœ‘ β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
461, 3, 54atexlempsb 38919 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
47 eqid 2732 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4847, 2, 4latmle1 18413 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
4944, 45, 46, 48syl3anc 1371 . . . . . . . . 9 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
5010, 49eqbrtrid 5182 . . . . . . . 8 (πœ‘ β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
5150adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
52 simpr 485 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
5447, 3, 5hlatjcl 38225 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
5514, 20, 16, 54syl3anc 1371 . . . . . . . . . . 11 (πœ‘ β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
5647, 2, 4latmle1 18413 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑅 ∨ 𝑇))
5744, 55, 46, 56syl3anc 1371 . . . . . . . . . 10 (πœ‘ β†’ ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑅 ∨ 𝑇))
5853, 57eqbrtrid 5182 . . . . . . . . 9 (πœ‘ β†’ 𝐷 ≀ (𝑅 ∨ 𝑇))
5958adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐷 ≀ (𝑅 ∨ 𝑇))
6052, 59eqbrtrd 5169 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ (𝑅 ∨ 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 38928 . . . . . . . . . 10 (πœ‘ β†’ 𝐢 ∈ 𝐴)
6247, 5atbase 38147 . . . . . . . . . 10 (𝐢 ∈ 𝐴 β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6361, 62syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6447, 2, 4latlem12 18415 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐢 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6544, 63, 45, 55, 64syl13anc 1372 . . . . . . . 8 (πœ‘ β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6665adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6751, 60, 66mpbi2and 710 . . . . . 6 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
68 hlatl 38218 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ AtLat)
7042, 16eqeltrrd 2834 . . . . . . . 8 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ∈ 𝐴)
712, 5atcmp 38169 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐢 ∈ 𝐴 ∧ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ∈ 𝐴) β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7269, 61, 70, 71syl3anc 1371 . . . . . . 7 (πœ‘ β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7372adantr 481 . . . . . 6 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7467, 73mpbid 231 . . . . 5 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
7543, 74eqtr4d 2775 . . . 4 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝑇 = 𝐢)
7675ex 413 . . 3 (πœ‘ β†’ (𝐢 = 𝐷 β†’ 𝑇 = 𝐢))
7776necon3d 2961 . 2 (πœ‘ β†’ (𝑇 β‰  𝐢 β†’ 𝐢 β‰  𝐷))
7813, 77mpd 15 1 (πœ‘ β†’ 𝐢 β‰  𝐷)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  AtLatcal 38122  CvLatclc 38123  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lhyp 38847
This theorem is referenced by:  4atexlemex4  38932
  Copyright terms: Public domain W3C validator