Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 38581
Description: Lemma for 4atexlem7 38584. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
4thatlem0.c 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
4thatlem0.d 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
Assertion
Ref Expression
4atexlemcnd (πœ‘ β†’ 𝐢 β‰  𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
2 4thatlem0.l . . . 4 ≀ = (leβ€˜πΎ)
3 4thatlem0.j . . . 4 ∨ = (joinβ€˜πΎ)
4 4thatlem0.m . . . 4 ∧ = (meetβ€˜πΎ)
5 4thatlem0.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
6 4thatlem0.h . . . 4 𝐻 = (LHypβ€˜πΎ)
7 4thatlem0.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 38576 . . 3 (πœ‘ β†’ 𝑇 ≀ π‘Š)
10 4thatlem0.c . . . 4 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 38579 . . 3 (πœ‘ β†’ Β¬ 𝐢 ≀ π‘Š)
12 nbrne2 5126 . . 3 ((𝑇 ≀ π‘Š ∧ Β¬ 𝐢 ≀ π‘Š) β†’ 𝑇 β‰  𝐢)
139, 11, 12syl2anc 585 . 2 (πœ‘ β†’ 𝑇 β‰  𝐢)
1414atexlemk 38556 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ HL)
1514atexlemq 38560 . . . . . . . . 9 (πœ‘ β†’ 𝑄 ∈ 𝐴)
1614atexlemt 38562 . . . . . . . . 9 (πœ‘ β†’ 𝑇 ∈ 𝐴)
173, 5hlatjcom 37876 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑄))
1814, 15, 16, 17syl3anc 1372 . . . . . . . 8 (πœ‘ β†’ (𝑄 ∨ 𝑇) = (𝑇 ∨ 𝑄))
19 simp221 1315 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
201, 19sylbi 216 . . . . . . . . 9 (πœ‘ β†’ 𝑅 ∈ 𝐴)
213, 5hlatjcom 37876 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑅 ∨ 𝑇) = (𝑇 ∨ 𝑅))
2214, 20, 16, 21syl3anc 1372 . . . . . . . 8 (πœ‘ β†’ (𝑅 ∨ 𝑇) = (𝑇 ∨ 𝑅))
2318, 22oveq12d 7376 . . . . . . 7 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) = ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)))
2414atexlemkc 38567 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ CvLat)
2514atexlemp 38559 . . . . . . . . 9 (πœ‘ β†’ 𝑃 ∈ 𝐴)
2614atexlempnq 38564 . . . . . . . . 9 (πœ‘ β†’ 𝑃 β‰  𝑄)
27 simp223 1317 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
281, 27sylbi 216 . . . . . . . . 9 (πœ‘ β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
295, 3cvlsupr6 37855 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑅 β‰  𝑄)
3029necomd 2996 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑄 β‰  𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1389 . . . . . . . 8 (πœ‘ β†’ 𝑄 β‰  𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 38577 . . . . . . . . 9 (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
335, 3cvlsupr7 37856 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1389 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))
353, 5hlatjcom 37876 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
3614, 15, 20, 35syl3anc 1372 . . . . . . . . . . 11 (πœ‘ β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
3734, 36eqtr4d 2776 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅))
3837breq2d 5118 . . . . . . . . 9 (πœ‘ β†’ (𝑇 ≀ (𝑃 ∨ 𝑄) ↔ 𝑇 ≀ (𝑄 ∨ 𝑅)))
3932, 38mtbid 324 . . . . . . . 8 (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑄 ∨ 𝑅))
402, 3, 4, 52llnma2 38298 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ (𝑄 ∨ 𝑅))) β†’ ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1389 . . . . . . 7 (πœ‘ β†’ ((𝑇 ∨ 𝑄) ∧ (𝑇 ∨ 𝑅)) = 𝑇)
4223, 41eqtr2d 2774 . . . . . 6 (πœ‘ β†’ 𝑇 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
4342adantr 482 . . . . 5 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝑇 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
4414atexlemkl 38566 . . . . . . . . . 10 (πœ‘ β†’ 𝐾 ∈ Lat)
451, 3, 54atexlemqtb 38570 . . . . . . . . . 10 (πœ‘ β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
461, 3, 54atexlempsb 38569 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
47 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
4847, 2, 4latmle1 18358 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
4944, 45, 46, 48syl3anc 1372 . . . . . . . . 9 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑄 ∨ 𝑇))
5010, 49eqbrtrid 5141 . . . . . . . 8 (πœ‘ β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
5150adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ (𝑄 ∨ 𝑇))
52 simpr 486 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆))
5447, 3, 5hlatjcl 37875 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
5514, 20, 16, 54syl3anc 1372 . . . . . . . . . . 11 (πœ‘ β†’ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
5647, 2, 4latmle1 18358 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑅 ∨ 𝑇))
5744, 55, 46, 56syl3anc 1372 . . . . . . . . . 10 (πœ‘ β†’ ((𝑅 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) ≀ (𝑅 ∨ 𝑇))
5853, 57eqbrtrid 5141 . . . . . . . . 9 (πœ‘ β†’ 𝐷 ≀ (𝑅 ∨ 𝑇))
5958adantr 482 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐷 ≀ (𝑅 ∨ 𝑇))
6052, 59eqbrtrd 5128 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ (𝑅 ∨ 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 38578 . . . . . . . . . 10 (πœ‘ β†’ 𝐢 ∈ 𝐴)
6247, 5atbase 37797 . . . . . . . . . 10 (𝐢 ∈ 𝐴 β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6361, 62syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐢 ∈ (Baseβ€˜πΎ))
6447, 2, 4latlem12 18360 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐢 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑇) ∈ (Baseβ€˜πΎ))) β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6544, 63, 45, 55, 64syl13anc 1373 . . . . . . . 8 (πœ‘ β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6665adantr 482 . . . . . . 7 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ ((𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ 𝑇)) ↔ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
6751, 60, 66mpbi2and 711 . . . . . 6 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
68 hlatl 37868 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ AtLat)
7042, 16eqeltrrd 2835 . . . . . . . 8 (πœ‘ β†’ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ∈ 𝐴)
712, 5atcmp 37819 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐢 ∈ 𝐴 ∧ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ∈ 𝐴) β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7269, 61, 70, 71syl3anc 1372 . . . . . . 7 (πœ‘ β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7372adantr 482 . . . . . 6 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ (𝐢 ≀ ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)) ↔ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇))))
7467, 73mpbid 231 . . . . 5 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝐢 = ((𝑄 ∨ 𝑇) ∧ (𝑅 ∨ 𝑇)))
7543, 74eqtr4d 2776 . . . 4 ((πœ‘ ∧ 𝐢 = 𝐷) β†’ 𝑇 = 𝐢)
7675ex 414 . . 3 (πœ‘ β†’ (𝐢 = 𝐷 β†’ 𝑇 = 𝐢))
7776necon3d 2961 . 2 (πœ‘ β†’ (𝑇 β‰  𝐢 β†’ 𝐢 β‰  𝐷))
7813, 77mpd 15 1 (πœ‘ β†’ 𝐢 β‰  𝐷)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325  Atomscatm 37771  AtLatcal 37772  CvLatclc 37773  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-llines 38007  df-lplanes 38008  df-lhyp 38497
This theorem is referenced by:  4atexlemex4  38582
  Copyright terms: Public domain W3C validator