Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemcnd Structured version   Visualization version   GIF version

Theorem 4atexlemcnd 37202
Description: Lemma for 4atexlem7 37205. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
4thatlem0.d 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemcnd (𝜑𝐶𝐷)

Proof of Theorem 4atexlemcnd
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 37197 . . 3 (𝜑𝑇 𝑊)
10 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
111, 2, 3, 4, 5, 6, 7, 8, 104atexlemnclw 37200 . . 3 (𝜑 → ¬ 𝐶 𝑊)
12 nbrne2 5078 . . 3 ((𝑇 𝑊 ∧ ¬ 𝐶 𝑊) → 𝑇𝐶)
139, 11, 12syl2anc 586 . 2 (𝜑𝑇𝐶)
1414atexlemk 37177 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
1514atexlemq 37181 . . . . . . . . 9 (𝜑𝑄𝐴)
1614atexlemt 37183 . . . . . . . . 9 (𝜑𝑇𝐴)
173, 5hlatjcom 36498 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
1814, 15, 16, 17syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
19 simp221 1310 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
201, 19sylbi 219 . . . . . . . . 9 (𝜑𝑅𝐴)
213, 5hlatjcom 36498 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) = (𝑇 𝑅))
2214, 20, 16, 21syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑅 𝑇) = (𝑇 𝑅))
2318, 22oveq12d 7168 . . . . . . 7 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) = ((𝑇 𝑄) (𝑇 𝑅)))
2414atexlemkc 37188 . . . . . . . . 9 (𝜑𝐾 ∈ CvLat)
2514atexlemp 37180 . . . . . . . . 9 (𝜑𝑃𝐴)
2614atexlempnq 37185 . . . . . . . . 9 (𝜑𝑃𝑄)
27 simp223 1312 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) = (𝑄 𝑅))
281, 27sylbi 219 . . . . . . . . 9 (𝜑 → (𝑃 𝑅) = (𝑄 𝑅))
295, 3cvlsupr6 36477 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝑄)
3029necomd 3071 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄𝑅)
3124, 25, 15, 20, 26, 28, 30syl132anc 1384 . . . . . . . 8 (𝜑𝑄𝑅)
321, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 37198 . . . . . . . . 9 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
335, 3cvlsupr7 36478 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
3424, 25, 15, 20, 26, 28, 33syl132anc 1384 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) = (𝑅 𝑄))
353, 5hlatjcom 36498 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
3614, 15, 20, 35syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑅) = (𝑅 𝑄))
3734, 36eqtr4d 2859 . . . . . . . . . 10 (𝜑 → (𝑃 𝑄) = (𝑄 𝑅))
3837breq2d 5070 . . . . . . . . 9 (𝜑 → (𝑇 (𝑃 𝑄) ↔ 𝑇 (𝑄 𝑅)))
3932, 38mtbid 326 . . . . . . . 8 (𝜑 → ¬ 𝑇 (𝑄 𝑅))
402, 3, 4, 52llnma2 36919 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑇𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 (𝑄 𝑅))) → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4114, 15, 20, 16, 31, 39, 40syl132anc 1384 . . . . . . 7 (𝜑 → ((𝑇 𝑄) (𝑇 𝑅)) = 𝑇)
4223, 41eqtr2d 2857 . . . . . 6 (𝜑𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4342adantr 483 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝑇 = ((𝑄 𝑇) (𝑅 𝑇)))
4414atexlemkl 37187 . . . . . . . . . 10 (𝜑𝐾 ∈ Lat)
451, 3, 54atexlemqtb 37191 . . . . . . . . . 10 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
461, 3, 54atexlempsb 37190 . . . . . . . . . 10 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
47 eqid 2821 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
4847, 2, 4latmle1 17680 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
4944, 45, 46, 48syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
5010, 49eqbrtrid 5093 . . . . . . . 8 (𝜑𝐶 (𝑄 𝑇))
5150adantr 483 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑄 𝑇))
52 simpr 487 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
53 4thatlem0.d . . . . . . . . . 10 𝐷 = ((𝑅 𝑇) (𝑃 𝑆))
5447, 3, 5hlatjcl 36497 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑇𝐴) → (𝑅 𝑇) ∈ (Base‘𝐾))
5514, 20, 16, 54syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (𝑅 𝑇) ∈ (Base‘𝐾))
5647, 2, 4latmle1 17680 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑅 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5744, 55, 46, 56syl3anc 1367 . . . . . . . . . 10 (𝜑 → ((𝑅 𝑇) (𝑃 𝑆)) (𝑅 𝑇))
5853, 57eqbrtrid 5093 . . . . . . . . 9 (𝜑𝐷 (𝑅 𝑇))
5958adantr 483 . . . . . . . 8 ((𝜑𝐶 = 𝐷) → 𝐷 (𝑅 𝑇))
6052, 59eqbrtrd 5080 . . . . . . 7 ((𝜑𝐶 = 𝐷) → 𝐶 (𝑅 𝑇))
611, 2, 3, 4, 5, 6, 7, 8, 104atexlemc 37199 . . . . . . . . . 10 (𝜑𝐶𝐴)
6247, 5atbase 36419 . . . . . . . . . 10 (𝐶𝐴𝐶 ∈ (Base‘𝐾))
6361, 62syl 17 . . . . . . . . 9 (𝜑𝐶 ∈ (Base‘𝐾))
6447, 2, 4latlem12 17682 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑅 𝑇) ∈ (Base‘𝐾))) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6544, 63, 45, 55, 64syl13anc 1368 . . . . . . . 8 (𝜑 → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6665adantr 483 . . . . . . 7 ((𝜑𝐶 = 𝐷) → ((𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑇)) ↔ 𝐶 ((𝑄 𝑇) (𝑅 𝑇))))
6751, 60, 66mpbi2and 710 . . . . . 6 ((𝜑𝐶 = 𝐷) → 𝐶 ((𝑄 𝑇) (𝑅 𝑇)))
68 hlatl 36490 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
6914, 68syl 17 . . . . . . . 8 (𝜑𝐾 ∈ AtLat)
7042, 16eqeltrrd 2914 . . . . . . . 8 (𝜑 → ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴)
712, 5atcmp 36441 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝐶𝐴 ∧ ((𝑄 𝑇) (𝑅 𝑇)) ∈ 𝐴) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7269, 61, 70, 71syl3anc 1367 . . . . . . 7 (𝜑 → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7372adantr 483 . . . . . 6 ((𝜑𝐶 = 𝐷) → (𝐶 ((𝑄 𝑇) (𝑅 𝑇)) ↔ 𝐶 = ((𝑄 𝑇) (𝑅 𝑇))))
7467, 73mpbid 234 . . . . 5 ((𝜑𝐶 = 𝐷) → 𝐶 = ((𝑄 𝑇) (𝑅 𝑇)))
7543, 74eqtr4d 2859 . . . 4 ((𝜑𝐶 = 𝐷) → 𝑇 = 𝐶)
7675ex 415 . . 3 (𝜑 → (𝐶 = 𝐷𝑇 = 𝐶))
7776necon3d 3037 . 2 (𝜑 → (𝑇𝐶𝐶𝐷))
7813, 77mpd 15 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5058  cfv 6349  (class class class)co 7150  Basecbs 16477  lecple 16566  joincjn 17548  meetcmee 17549  Latclat 17649  Atomscatm 36393  AtLatcal 36394  CvLatclc 36395  HLchlt 36480  LHypclh 37114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lhyp 37118
This theorem is referenced by:  4atexlemex4  37203
  Copyright terms: Public domain W3C validator