Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26eALTN Structured version   Visualization version   GIF version

Theorem cdleme26eALTN 38302
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26eALT.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26eALT.f 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
cdleme26eALT.g 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26eALT.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
cdleme26eALT.o 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
cdleme26eALT.i 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26eALT.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26eALTN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑦,𝑧,𝑢,𝐴   𝑦,𝐵,𝑧,𝑢   𝑦,𝐻,𝑧   𝑦, ,𝑧,𝑢   𝑦,𝐾,𝑧   𝑦, ,𝑧,𝑢   𝑦, ,𝑧,𝑢   𝑢,𝑁   𝑢,𝑂   𝑦,𝑃,𝑧,𝑢   𝑦,𝑄,𝑧,𝑢   𝑦,𝑆,𝑢   𝑧,𝑇,𝑢   𝑦,𝑈,𝑧,𝑢   𝑦,𝑊,𝑧,𝑢
Allowed substitution hints:   𝑆(𝑧)   𝑇(𝑦)   𝐸(𝑦,𝑧,𝑢)   𝐹(𝑦,𝑧,𝑢)   𝐺(𝑦,𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑦,𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑦,𝑧)   𝑂(𝑦,𝑧)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem cdleme26eALTN
StepHypRef Expression
1 simp11l 1282 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp11r 1283 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑊𝐻)
3 simp231 1315 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp12 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp13 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp21 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑃𝑄)
7 simp221 1312 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆𝐴)
8 simp31 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)))
9 simp21 1204 . . . . 5 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑦𝐴)
1093ad2ant3 1133 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑦𝐴)
11 simp322 1322 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 𝑊)
12 simp31 1207 . . . . . 6 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
13123ad2ant3 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑧𝐴)
14 simp332 1325 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 𝑊)
1513, 14jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
1610, 11, 15jca31 514 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))
17 cdleme26.l . . . 4 = (le‘𝐾)
18 cdleme26.j . . . 4 = (join‘𝐾)
19 cdleme26.m . . . 4 = (meet‘𝐾)
20 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
21 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
22 cdleme26eALT.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
23 cdleme26eALT.f . . . 4 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
24 cdleme26eALT.g . . . 4 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
25 cdleme26eALT.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
26 cdleme26eALT.o . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
2717, 18, 19, 20, 21, 22, 23, 24, 25, 26cdleme22eALTN 38286 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))
281, 2, 3, 4, 5, 6, 7, 8, 16, 27syl333anc 1400 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑁 (𝑂 𝑉))
29 simp11 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp222 1313 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑆 𝑊)
31 simp223 1314 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
32 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
33 cdleme26eALT.i . . . . 5 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
3432, 17, 18, 19, 20, 21, 22, 23, 25, 33cdleme25cl 38298 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐼𝐵)
3529, 4, 5, 7, 30, 6, 31, 34syl322anc 1396 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼𝐵)
36 simp323 1323 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 (𝑃 𝑄))
3732fvexi 6770 . . . 4 𝐵 ∈ V
3837, 33riotasv 36900 . . 3 ((𝐼𝐵𝑦𝐴 ∧ (¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄))) → 𝐼 = 𝑁)
3935, 10, 11, 36, 38syl112anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 = 𝑁)
40 simp232 1316 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑇 𝑊)
41 simp233 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇 (𝑃 𝑄))
42 cdleme26eALT.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
4332, 17, 18, 19, 20, 21, 22, 24, 26, 42cdleme25cl 38298 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → 𝐸𝐵)
4429, 4, 5, 3, 40, 6, 41, 43syl322anc 1396 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸𝐵)
45 simp333 1326 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 (𝑃 𝑄))
4637, 42riotasv 36900 . . . 4 ((𝐸𝐵𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐸 = 𝑂)
4744, 13, 14, 45, 46syl112anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸 = 𝑂)
4847oveq1d 7270 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐸 𝑉) = (𝑂 𝑉))
4928, 39, 483brtr4d 5102 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  HLchlt 37291  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator