Proof of Theorem cdleme26eALTN
Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐾 ∈ HL) |
2 | | simp11r 1284 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑊 ∈ 𝐻) |
3 | | simp231 1316 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑇 ∈ 𝐴) |
4 | | simp12 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
5 | | simp13 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
6 | | simp21 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑃 ≠ 𝑄) |
7 | | simp221 1313 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ∈ 𝐴) |
8 | | simp31 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄))) |
9 | | simp21 1205 |
. . . . 5
⊢ (((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) → 𝑦 ∈ 𝐴) |
10 | 9 | 3ad2ant3 1134 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑦 ∈ 𝐴) |
11 | | simp322 1323 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑦 ≤ 𝑊) |
12 | | simp31 1208 |
. . . . . 6
⊢ (((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) → 𝑧 ∈ 𝐴) |
13 | 12 | 3ad2ant3 1134 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑧 ∈ 𝐴) |
14 | | simp332 1326 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑧 ≤ 𝑊) |
15 | 13, 14 | jca 512 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)) |
16 | 10, 11, 15 | jca31 515 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊))) |
17 | | cdleme26.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
18 | | cdleme26.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
19 | | cdleme26.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
20 | | cdleme26.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
21 | | cdleme26.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
22 | | cdleme26eALT.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
23 | | cdleme26eALT.f |
. . . 4
⊢ 𝐹 = ((𝑦 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑦) ∧ 𝑊))) |
24 | | cdleme26eALT.g |
. . . 4
⊢ 𝐺 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
25 | | cdleme26eALT.n |
. . . 4
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑆 ∨ 𝑦) ∧ 𝑊))) |
26 | | cdleme26eALT.o |
. . . 4
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑇 ∨ 𝑧) ∧ 𝑊))) |
27 | 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 | cdleme22eALTN 38359 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ∈ 𝐴 ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊)))) → 𝑁 ≤ (𝑂 ∨ 𝑉)) |
28 | 1, 2, 3, 4, 5, 6, 7, 8, 16, 27 | syl333anc 1401 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑁 ≤ (𝑂 ∨ 𝑉)) |
29 | | simp11 1202 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
30 | | simp222 1314 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑆 ≤ 𝑊) |
31 | | simp223 1315 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑆 ≤ (𝑃 ∨ 𝑄)) |
32 | | cdleme26.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
33 | | cdleme26eALT.i |
. . . . 5
⊢ 𝐼 = (℩𝑢 ∈ 𝐵 ∀𝑦 ∈ 𝐴 ((¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
34 | 32, 17, 18, 19, 20, 21, 22, 23, 25, 33 | cdleme25cl 38371 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐼 ∈ 𝐵) |
35 | 29, 4, 5, 7, 30, 6,
31, 34 | syl322anc 1397 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐼 ∈ 𝐵) |
36 | | simp323 1324 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) |
37 | 32 | fvexi 6788 |
. . . 4
⊢ 𝐵 ∈ V |
38 | 37, 33 | riotasv 36973 |
. . 3
⊢ ((𝐼 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ (¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄))) → 𝐼 = 𝑁) |
39 | 35, 10, 11, 36, 38 | syl112anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐼 = 𝑁) |
40 | | simp232 1317 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑇 ≤ 𝑊) |
41 | | simp233 1318 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝑇 ≤ (𝑃 ∨ 𝑄)) |
42 | | cdleme26eALT.e |
. . . . . 6
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
43 | 32, 17, 18, 19, 20, 21, 22, 24, 26, 42 | cdleme25cl 38371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → 𝐸 ∈ 𝐵) |
44 | 29, 4, 5, 3, 40, 6,
41, 43 | syl322anc 1397 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐸 ∈ 𝐵) |
45 | | simp333 1327 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) |
46 | 37, 42 | riotasv 36973 |
. . . 4
⊢ ((𝐸 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ (¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄))) → 𝐸 = 𝑂) |
47 | 44, 13, 14, 45, 46 | syl112anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐸 = 𝑂) |
48 | 47 | oveq1d 7290 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → (𝐸 ∨ 𝑉) = (𝑂 ∨ 𝑉)) |
49 | 28, 39, 48 | 3brtr4d 5106 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ∧ 𝑆 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ (𝑇 ∨ 𝑉) = (𝑃 ∨ 𝑄)) ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ∧ ¬ 𝑦 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)))) → 𝐼 ≤ (𝐸 ∨ 𝑉)) |