Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26eALTN Structured version   Visualization version   GIF version

Theorem cdleme26eALTN 40344
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26eALT.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26eALT.f 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
cdleme26eALT.g 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26eALT.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
cdleme26eALT.o 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
cdleme26eALT.i 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26eALT.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26eALTN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑦,𝑧,𝑢,𝐴   𝑦,𝐵,𝑧,𝑢   𝑦,𝐻,𝑧   𝑦, ,𝑧,𝑢   𝑦,𝐾,𝑧   𝑦, ,𝑧,𝑢   𝑦, ,𝑧,𝑢   𝑢,𝑁   𝑢,𝑂   𝑦,𝑃,𝑧,𝑢   𝑦,𝑄,𝑧,𝑢   𝑦,𝑆,𝑢   𝑧,𝑇,𝑢   𝑦,𝑈,𝑧,𝑢   𝑦,𝑊,𝑧,𝑢
Allowed substitution hints:   𝑆(𝑧)   𝑇(𝑦)   𝐸(𝑦,𝑧,𝑢)   𝐹(𝑦,𝑧,𝑢)   𝐺(𝑦,𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑦,𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑦,𝑧)   𝑂(𝑦,𝑧)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem cdleme26eALTN
StepHypRef Expression
1 simp11l 1285 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp11r 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑊𝐻)
3 simp231 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp21 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑃𝑄)
7 simp221 1315 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆𝐴)
8 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)))
9 simp21 1207 . . . . 5 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑦𝐴)
1093ad2ant3 1135 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑦𝐴)
11 simp322 1325 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 𝑊)
12 simp31 1210 . . . . . 6 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
13123ad2ant3 1135 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑧𝐴)
14 simp332 1328 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 𝑊)
1513, 14jca 511 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
1610, 11, 15jca31 514 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))
17 cdleme26.l . . . 4 = (le‘𝐾)
18 cdleme26.j . . . 4 = (join‘𝐾)
19 cdleme26.m . . . 4 = (meet‘𝐾)
20 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
21 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
22 cdleme26eALT.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
23 cdleme26eALT.f . . . 4 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
24 cdleme26eALT.g . . . 4 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
25 cdleme26eALT.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
26 cdleme26eALT.o . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
2717, 18, 19, 20, 21, 22, 23, 24, 25, 26cdleme22eALTN 40328 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))
281, 2, 3, 4, 5, 6, 7, 8, 16, 27syl333anc 1404 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑁 (𝑂 𝑉))
29 simp11 1204 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp222 1316 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑆 𝑊)
31 simp223 1317 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
32 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
33 cdleme26eALT.i . . . . 5 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
3432, 17, 18, 19, 20, 21, 22, 23, 25, 33cdleme25cl 40340 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐼𝐵)
3529, 4, 5, 7, 30, 6, 31, 34syl322anc 1400 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼𝐵)
36 simp323 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 (𝑃 𝑄))
3732fvexi 6836 . . . 4 𝐵 ∈ V
3837, 33riotasv 38942 . . 3 ((𝐼𝐵𝑦𝐴 ∧ (¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄))) → 𝐼 = 𝑁)
3935, 10, 11, 36, 38syl112anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 = 𝑁)
40 simp232 1319 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑇 𝑊)
41 simp233 1320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇 (𝑃 𝑄))
42 cdleme26eALT.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
4332, 17, 18, 19, 20, 21, 22, 24, 26, 42cdleme25cl 40340 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → 𝐸𝐵)
4429, 4, 5, 3, 40, 6, 41, 43syl322anc 1400 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸𝐵)
45 simp333 1329 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 (𝑃 𝑄))
4637, 42riotasv 38942 . . . 4 ((𝐸𝐵𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐸 = 𝑂)
4744, 13, 14, 45, 46syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸 = 𝑂)
4847oveq1d 7364 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐸 𝑉) = (𝑂 𝑉))
4928, 39, 483brtr4d 5124 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5092  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39246  HLchlt 39333  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator