Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme26eALTN Structured version   Visualization version   GIF version

Theorem cdleme26eALTN 38375
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 4th line on p. 115. 𝐹, 𝑁, 𝑂 represent f(z), fz(s), fz(t) respectively. When t v = p q, fz(s) fz(t) v. TODO: FIX COMMENT. (Contributed by NM, 1-Feb-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme26eALT.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme26eALT.f 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
cdleme26eALT.g 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme26eALT.n 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
cdleme26eALT.o 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
cdleme26eALT.i 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme26eALT.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
Assertion
Ref Expression
cdleme26eALTN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Distinct variable groups:   𝑦,𝑧,𝑢,𝐴   𝑦,𝐵,𝑧,𝑢   𝑦,𝐻,𝑧   𝑦, ,𝑧,𝑢   𝑦,𝐾,𝑧   𝑦, ,𝑧,𝑢   𝑦, ,𝑧,𝑢   𝑢,𝑁   𝑢,𝑂   𝑦,𝑃,𝑧,𝑢   𝑦,𝑄,𝑧,𝑢   𝑦,𝑆,𝑢   𝑧,𝑇,𝑢   𝑦,𝑈,𝑧,𝑢   𝑦,𝑊,𝑧,𝑢
Allowed substitution hints:   𝑆(𝑧)   𝑇(𝑦)   𝐸(𝑦,𝑧,𝑢)   𝐹(𝑦,𝑧,𝑢)   𝐺(𝑦,𝑧,𝑢)   𝐻(𝑢)   𝐼(𝑦,𝑧,𝑢)   𝐾(𝑢)   𝑁(𝑦,𝑧)   𝑂(𝑦,𝑧)   𝑉(𝑦,𝑧,𝑢)

Proof of Theorem cdleme26eALTN
StepHypRef Expression
1 simp11l 1283 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐾 ∈ HL)
2 simp11r 1284 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑊𝐻)
3 simp231 1316 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇𝐴)
4 simp12 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp13 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simp21 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑃𝑄)
7 simp221 1313 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆𝐴)
8 simp31 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)))
9 simp21 1205 . . . . 5 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑦𝐴)
1093ad2ant3 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑦𝐴)
11 simp322 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 𝑊)
12 simp31 1208 . . . . . 6 (((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝑧𝐴)
13123ad2ant3 1134 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑧𝐴)
14 simp332 1326 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 𝑊)
1513, 14jca 512 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
1610, 11, 15jca31 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))
17 cdleme26.l . . . 4 = (le‘𝐾)
18 cdleme26.j . . . 4 = (join‘𝐾)
19 cdleme26.m . . . 4 = (meet‘𝐾)
20 cdleme26.a . . . 4 𝐴 = (Atoms‘𝐾)
21 cdleme26.h . . . 4 𝐻 = (LHyp‘𝐾)
22 cdleme26eALT.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
23 cdleme26eALT.f . . . 4 𝐹 = ((𝑦 𝑈) (𝑄 ((𝑃 𝑦) 𝑊)))
24 cdleme26eALT.g . . . 4 𝐺 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
25 cdleme26eALT.n . . . 4 𝑁 = ((𝑃 𝑄) (𝐹 ((𝑆 𝑦) 𝑊)))
26 cdleme26eALT.o . . . 4 𝑂 = ((𝑃 𝑄) (𝐺 ((𝑇 𝑧) 𝑊)))
2717, 18, 19, 20, 21, 22, 23, 24, 25, 26cdleme22eALTN 38359 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑇𝐴) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (𝑆𝐴 ∧ (𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ ((𝑦𝐴 ∧ ¬ 𝑦 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)))) → 𝑁 (𝑂 𝑉))
281, 2, 3, 4, 5, 6, 7, 8, 16, 27syl333anc 1401 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑁 (𝑂 𝑉))
29 simp11 1202 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simp222 1314 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑆 𝑊)
31 simp223 1315 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑆 (𝑃 𝑄))
32 cdleme26.b . . . . 5 𝐵 = (Base‘𝐾)
33 cdleme26eALT.i . . . . 5 𝐼 = (𝑢𝐵𝑦𝐴 ((¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) → 𝑢 = 𝑁))
3432, 17, 18, 19, 20, 21, 22, 23, 25, 33cdleme25cl 38371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑃𝑄𝑆 (𝑃 𝑄))) → 𝐼𝐵)
3529, 4, 5, 7, 30, 6, 31, 34syl322anc 1397 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼𝐵)
36 simp323 1324 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑦 (𝑃 𝑄))
3732fvexi 6788 . . . 4 𝐵 ∈ V
3837, 33riotasv 36973 . . 3 ((𝐼𝐵𝑦𝐴 ∧ (¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄))) → 𝐼 = 𝑁)
3935, 10, 11, 36, 38syl112anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 = 𝑁)
40 simp232 1317 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑇 𝑊)
41 simp233 1318 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝑇 (𝑃 𝑄))
42 cdleme26eALT.e . . . . . 6 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
4332, 17, 18, 19, 20, 21, 22, 24, 26, 42cdleme25cl 38371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → 𝐸𝐵)
4429, 4, 5, 3, 40, 6, 41, 43syl322anc 1397 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸𝐵)
45 simp333 1327 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → ¬ 𝑧 (𝑃 𝑄))
4637, 42riotasv 36973 . . . 4 ((𝐸𝐵𝑧𝐴 ∧ (¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄))) → 𝐸 = 𝑂)
4744, 13, 14, 45, 46syl112anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐸 = 𝑂)
4847oveq1d 7290 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → (𝐸 𝑉) = (𝑂 𝑉))
4928, 39, 483brtr4d 5106 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊𝑆 (𝑃 𝑄)) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊𝑇 (𝑃 𝑄))) ∧ ((𝑉𝐴𝑉 𝑊 ∧ (𝑇 𝑉) = (𝑃 𝑄)) ∧ (𝑦𝐴 ∧ ¬ 𝑦 𝑊 ∧ ¬ 𝑦 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)))) → 𝐼 (𝐸 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator