Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk23-3 Structured version   Visualization version   GIF version

Theorem cdlemk23-3 40286
Description: Part of proof of Lemma K of [Crawley] p. 118. Eliminate the (π‘…β€˜πΆ) β‰  (π‘…β€˜π·) requirement from cdlemk22-3 40285. (Contributed by NM, 7-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐡 = (Baseβ€˜πΎ)
cdlemk3.l ≀ = (leβ€˜πΎ)
cdlemk3.j ∨ = (joinβ€˜πΎ)
cdlemk3.m ∧ = (meetβ€˜πΎ)
cdlemk3.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk3.h 𝐻 = (LHypβ€˜πΎ)
cdlemk3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk3.s 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
cdlemk3.u1 π‘Œ = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ (((π‘†β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))
Assertion
Ref Expression
cdlemk23-3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((π·π‘ŒπΊ)β€˜π‘ƒ) = ((πΆπ‘ŒπΊ)β€˜π‘ƒ))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖, ∧   ≀ ,𝑖   ∨ ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝐷,𝑒,𝑓,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   π‘Š,𝑑,𝑒,𝑓,𝑖   ∧ ,𝑗   ≀ ,𝑗   ∨ ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑆,𝑑,𝑒,𝑗   𝑇,𝑗   𝑗,π‘Š   𝐹,𝑑,𝑒   ≀ ,𝑒   𝐢,𝑑,𝑒,𝑓,𝑖,𝑗   𝑓,𝐺,𝑖   π‘₯,𝑑,𝑒,𝑓,𝑖,𝑗
Allowed substitution hints:   𝐴(π‘₯,𝑒,𝑓,𝑑)   𝐡(π‘₯,𝑒,𝑓,𝑖,𝑗,𝑑)   𝐢(π‘₯)   𝐷(π‘₯)   𝑃(π‘₯)   𝑅(π‘₯)   𝑆(π‘₯,𝑓,𝑖)   𝑇(π‘₯)   𝐹(π‘₯)   𝐺(π‘₯)   𝐻(π‘₯,𝑒,𝑓,𝑑)   ∨ (π‘₯)   𝐾(π‘₯,𝑒,𝑓,𝑑)   ≀ (π‘₯,𝑓,𝑑)   ∧ (π‘₯)   𝑁(π‘₯,𝑒,𝑑)   π‘Š(π‘₯)   π‘Œ(π‘₯,𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk23-3
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp121 1302 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐹 ∈ 𝑇)
3 simp122 1303 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐷 ∈ 𝑇)
4 simp123 1304 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝑁 ∈ 𝑇)
5 simp131 1305 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐺 ∈ 𝑇)
6 simp133 1307 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ π‘₯ ∈ 𝑇)
74, 5, 63jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇))
8 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
9 simp221 1311 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
10 simp222 1312 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
11 simp223 1313 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐷 β‰  ( I β†Ύ 𝐡))
12 simp231 1314 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐺 β‰  ( I β†Ύ 𝐡))
1310, 11, 123jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
14 simp233 1316 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ π‘₯ β‰  ( I β†Ύ 𝐡))
15 simp333 1325 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯))
16 simp332 1324 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ))
1714, 15, 163jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘₯ β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ)))
18 simp313 1319 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ))
19 simp32l 1295 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜π·))
20 simp331 1323 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜π‘₯) β‰  (π‘…β€˜π·))
2118, 19, 203jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜π·)))
22 cdlemk3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
23 cdlemk3.l . . . 4 ≀ = (leβ€˜πΎ)
24 cdlemk3.j . . . 4 ∨ = (joinβ€˜πΎ)
25 cdlemk3.m . . . 4 ∧ = (meetβ€˜πΎ)
26 cdlemk3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
27 cdlemk3.h . . . 4 𝐻 = (LHypβ€˜πΎ)
28 cdlemk3.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
29 cdlemk3.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
30 cdlemk3.s . . . 4 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
31 cdlemk3.u1 . . . 4 π‘Œ = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ (((π‘†β€˜π‘‘)β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝑑))))))
3222, 23, 24, 25, 26, 27, 28, 29, 30, 31cdlemk22-3 40285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (π‘₯ β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜π·)))) β†’ ((π·π‘ŒπΊ)β€˜π‘ƒ) = ((π‘₯π‘ŒπΊ)β€˜π‘ƒ))
331, 2, 3, 7, 8, 9, 13, 17, 21, 32syl333anc 1399 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((π·π‘ŒπΊ)β€˜π‘ƒ) = ((π‘₯π‘ŒπΊ)β€˜π‘ƒ))
34 simp132 1306 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐢 ∈ 𝑇)
35 simp232 1315 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ 𝐢 β‰  ( I β†Ύ 𝐡))
3610, 35, 123jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)))
37 simp312 1318 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ))
38 simp311 1317 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ))
39 simp32r 1296 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ))
4037, 38, 393jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)))
4122, 23, 24, 25, 26, 27, 28, 29, 30, 31cdlemk22-3 40285 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ 𝐺 β‰  ( I β†Ύ 𝐡)) ∧ (π‘₯ β‰  ( I β†Ύ 𝐡) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)))) β†’ ((πΆπ‘ŒπΊ)β€˜π‘ƒ) = ((π‘₯π‘ŒπΊ)β€˜π‘ƒ))
421, 2, 34, 7, 8, 9, 36, 17, 40, 41syl333anc 1399 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((πΆπ‘ŒπΊ)β€˜π‘ƒ) = ((π‘₯π‘ŒπΊ)β€˜π‘ƒ))
4333, 42eqtr4d 2769 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇 ∧ π‘₯ ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝐺 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ π‘₯ β‰  ( I β†Ύ 𝐡))) ∧ (((π‘…β€˜πΊ) β‰  (π‘…β€˜πΆ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ ((π‘…β€˜πΊ) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΆ)) ∧ ((π‘…β€˜π‘₯) β‰  (π‘…β€˜π·) ∧ (π‘…β€˜π‘₯) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΊ) β‰  (π‘…β€˜π‘₯)))) β†’ ((π·π‘ŒπΊ)β€˜π‘ƒ) = ((πΆπ‘ŒπΊ)β€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141   ↦ cmpt 5224   I cid 5566  β—‘ccnv 5668   β†Ύ cres 5671   ∘ ccom 5673  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Atomscatm 38646  HLchlt 38733  LHypclh 39368  LTrncltrn 39485  trLctrl 39542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-undef 8259  df-map 8824  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543
This theorem is referenced by:  cdlemk24-3  40287
  Copyright terms: Public domain W3C validator