Proof of Theorem cdlemk23-3
Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp121 1304 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐹 ∈ 𝑇) |
3 | | simp122 1305 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐷 ∈ 𝑇) |
4 | | simp123 1306 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝑁 ∈ 𝑇) |
5 | | simp131 1307 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐺 ∈ 𝑇) |
6 | | simp133 1309 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝑥 ∈ 𝑇) |
7 | 4, 5, 6 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) |
8 | | simp21 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
9 | | simp221 1313 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐹) = (𝑅‘𝑁)) |
10 | | simp222 1314 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐹 ≠ ( I ↾ 𝐵)) |
11 | | simp223 1315 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐷 ≠ ( I ↾ 𝐵)) |
12 | | simp231 1316 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐺 ≠ ( I ↾ 𝐵)) |
13 | 10, 11, 12 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
14 | | simp233 1318 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝑥 ≠ ( I ↾ 𝐵)) |
15 | | simp333 1327 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐺) ≠ (𝑅‘𝑥)) |
16 | | simp332 1326 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝑥) ≠ (𝑅‘𝐹)) |
17 | 14, 15, 16 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹))) |
18 | | simp313 1321 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐷) ≠ (𝑅‘𝐹)) |
19 | | simp32l 1297 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐺) ≠ (𝑅‘𝐷)) |
20 | | simp331 1325 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝑥) ≠ (𝑅‘𝐷)) |
21 | 18, 19, 20 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐷))) |
22 | | cdlemk3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
23 | | cdlemk3.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
24 | | cdlemk3.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
25 | | cdlemk3.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
26 | | cdlemk3.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
27 | | cdlemk3.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
28 | | cdlemk3.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
29 | | cdlemk3.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
30 | | cdlemk3.s |
. . . 4
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
31 | | cdlemk3.u1 |
. . . 4
⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | cdlemk22-3 38915 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐷)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝑥𝑌𝐺)‘𝑃)) |
33 | 1, 2, 3, 7, 8, 9, 13, 17, 21, 32 | syl333anc 1401 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝑥𝑌𝐺)‘𝑃)) |
34 | | simp132 1308 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐶 ∈ 𝑇) |
35 | | simp232 1317 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → 𝐶 ≠ ( I ↾ 𝐵)) |
36 | 10, 35, 12 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵))) |
37 | | simp312 1320 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐶) ≠ (𝑅‘𝐹)) |
38 | | simp311 1319 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝐺) ≠ (𝑅‘𝐶)) |
39 | | simp32r 1298 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → (𝑅‘𝑥) ≠ (𝑅‘𝐶)) |
40 | 37, 38, 39 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶))) |
41 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | cdlemk22-3 38915 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑥 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)))) → ((𝐶𝑌𝐺)‘𝑃) = ((𝑥𝑌𝐺)‘𝑃)) |
42 | 1, 2, 34, 7, 8, 9,
36, 17, 40, 41 | syl333anc 1401 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐶𝑌𝐺)‘𝑃) = ((𝑥𝑌𝐺)‘𝑃)) |
43 | 33, 42 | eqtr4d 2781 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝐶 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐶 ≠ ( I ↾ 𝐵) ∧ 𝑥 ≠ ( I ↾ 𝐵))) ∧ (((𝑅‘𝐺) ≠ (𝑅‘𝐶) ∧ (𝑅‘𝐶) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐶)) ∧ ((𝑅‘𝑥) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝑥) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝑥)))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝐶𝑌𝐺)‘𝑃)) |