![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smgrpismgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sgrpmgm 18615 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
smgrpismgmOLD | ⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3965 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ Ass)) | |
2 | 1 | simplbi 499 | . 2 ⊢ (𝐺 ∈ (Magma ∩ Ass) → 𝐺 ∈ Magma) |
3 | df-sgrOLD 36729 | . 2 ⊢ SemiGrp = (Magma ∩ Ass) | |
4 | 2, 3 | eleq2s 2852 | 1 ⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∩ cin 3948 Asscass 36710 Magmacmagm 36716 SemiGrpcsem 36728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-sgrOLD 36729 |
This theorem is referenced by: mndoismgmOLD 36738 |
Copyright terms: Public domain | W3C validator |