![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smgrpismgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sgrpmgm 18762 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
smgrpismgmOLD | ⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ Ass)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐺 ∈ (Magma ∩ Ass) → 𝐺 ∈ Magma) |
3 | df-sgrOLD 37821 | . 2 ⊢ SemiGrp = (Magma ∩ Ass) | |
4 | 2, 3 | eleq2s 2862 | 1 ⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 Asscass 37802 Magmacmagm 37808 SemiGrpcsem 37820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-sgrOLD 37821 |
This theorem is referenced by: mndoismgmOLD 37830 |
Copyright terms: Public domain | W3C validator |