Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smgrpismgmOLD Structured version   Visualization version   GIF version

Theorem smgrpismgmOLD 36730
Description: Obsolete version of sgrpmgm 18615 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
smgrpismgmOLD (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma)

Proof of Theorem smgrpismgmOLD
StepHypRef Expression
1 elin 3965 . . 3 (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ Ass))
21simplbi 499 . 2 (𝐺 ∈ (Magma ∩ Ass) → 𝐺 ∈ Magma)
3 df-sgrOLD 36729 . 2 SemiGrp = (Magma ∩ Ass)
42, 3eleq2s 2852 1 (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cin 3948  Asscass 36710  Magmacmagm 36716  SemiGrpcsem 36728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-sgrOLD 36729
This theorem is referenced by:  mndoismgmOLD  36738
  Copyright terms: Public domain W3C validator