| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issmgrpOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of issgrp 18733 as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| issmgrpOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| issmgrpOLD | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sgrOLD 37868 | . . 3 ⊢ SemiGrp = (Magma ∩ Ass) | |
| 2 | 1 | eleq2i 2833 | . 2 ⊢ (𝐺 ∈ SemiGrp ↔ 𝐺 ∈ (Magma ∩ Ass)) |
| 3 | elin 3967 | . . 3 ⊢ (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ Ass)) | |
| 4 | issmgrpOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
| 5 | 4 | ismgmOLD 37857 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
| 6 | 4 | isass 37853 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 7 | 5, 6 | anbi12d 632 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ((𝐺 ∈ Magma ∧ 𝐺 ∈ Ass) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 8 | 3, 7 | bitrid 283 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 9 | 2, 8 | bitrid 283 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∩ cin 3950 × cxp 5683 dom cdm 5685 ⟶wf 6557 (class class class)co 7431 Asscass 37849 Magmacmagm 37855 SemiGrpcsem 37867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-ass 37850 df-mgmOLD 37856 df-sgrOLD 37868 |
| This theorem is referenced by: smgrpmgm 37871 smgrpassOLD 37872 ismndo1 37880 |
| Copyright terms: Public domain | W3C validator |