| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrpmgm | Structured version Visualization version GIF version | ||
| Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpmgm | ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2734 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 3 | 1, 2 | issgrp 18702 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 Mgmcmgm 18620 Smgrpcsgrp 18700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-ov 7416 df-sgrp 18701 |
| This theorem is referenced by: sgrpcl 18708 mndmgm 18723 gsumsgrpccat 18822 sgrpssmgm 18915 dfgrp2 18949 dfgrp3e 19027 mulgnndir 19090 mulgnnass 19096 rngcl 20129 isrnghmmul 20410 idrnghm 20426 c0rnghm 20503 |
| Copyright terms: Public domain | W3C validator |