MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpmgm Structured version   Visualization version   GIF version

Theorem sgrpmgm 18658
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Assertion
Ref Expression
sgrpmgm (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)

Proof of Theorem sgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2730 . . 3 (+g𝑀) = (+g𝑀)
31, 2issgrp 18654 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
43simplbi 497 1 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Mgmcmgm 18572  Smgrpcsgrp 18652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-sgrp 18653
This theorem is referenced by:  sgrpcl  18660  mndmgm  18675  gsumsgrpccat  18774  sgrpssmgm  18867  dfgrp2  18901  dfgrp3e  18979  mulgnndir  19042  mulgnnass  19048  rngcl  20080  isrnghmmul  20358  idrnghm  20374  c0rnghm  20451
  Copyright terms: Public domain W3C validator