Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrpmgm | Structured version Visualization version GIF version |
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
Ref | Expression |
---|---|
sgrpmgm | ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2739 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | issgrp 18357 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Mgmcmgm 18305 Smgrpcsgrp 18355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-sgrp 18356 |
This theorem is referenced by: mndmgm 18373 gsumsgrpccat 18459 sgrpssmgm 18553 dfgrp2 18585 dfgrp3e 18656 mulgnndir 18713 mulgnnass 18719 rngcl 45393 isrnghmmul 45403 idrnghm 45418 c0rnghm 45423 |
Copyright terms: Public domain | W3C validator |