MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpmgm Structured version   Visualization version   GIF version

Theorem sgrpmgm 18706
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Assertion
Ref Expression
sgrpmgm (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)

Proof of Theorem sgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2734 . . 3 (+g𝑀) = (+g𝑀)
31, 2issgrp 18702 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
43simplbi 497 1 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  Mgmcmgm 18620  Smgrpcsgrp 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416  df-sgrp 18701
This theorem is referenced by:  sgrpcl  18708  mndmgm  18723  gsumsgrpccat  18822  sgrpssmgm  18915  dfgrp2  18949  dfgrp3e  19027  mulgnndir  19090  mulgnnass  19096  rngcl  20129  isrnghmmul  20410  idrnghm  20426  c0rnghm  20503
  Copyright terms: Public domain W3C validator