MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpmgm Structured version   Visualization version   GIF version

Theorem sgrpmgm 18598
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Assertion
Ref Expression
sgrpmgm (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)

Proof of Theorem sgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2729 . . 3 (+g𝑀) = (+g𝑀)
31, 2issgrp 18594 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
43simplbi 497 1 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18512  Smgrpcsgrp 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-iota 6438  df-fv 6490  df-ov 7352  df-sgrp 18593
This theorem is referenced by:  sgrpcl  18600  mndmgm  18615  gsumsgrpccat  18714  sgrpssmgm  18807  dfgrp2  18841  dfgrp3e  18919  mulgnndir  18982  mulgnnass  18988  rngcl  20049  isrnghmmul  20327  idrnghm  20343  c0rnghm  20420
  Copyright terms: Public domain W3C validator