MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpmgm Structured version   Visualization version   GIF version

Theorem sgrpmgm 18737
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Assertion
Ref Expression
sgrpmgm (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)

Proof of Theorem sgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2737 . . 3 (+g𝑀) = (+g𝑀)
31, 2issgrp 18733 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
43simplbi 497 1 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Mgmcmgm 18651  Smgrpcsgrp 18731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-sgrp 18732
This theorem is referenced by:  sgrpcl  18739  mndmgm  18754  gsumsgrpccat  18853  sgrpssmgm  18946  dfgrp2  18980  dfgrp3e  19058  mulgnndir  19121  mulgnnass  19127  rngcl  20161  isrnghmmul  20442  idrnghm  20458  c0rnghm  20535
  Copyright terms: Public domain W3C validator