Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrpmgm | Structured version Visualization version GIF version |
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
Ref | Expression |
---|---|
sgrpmgm | ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
3 | 1, 2 | issgrp 18425 | . 2 ⊢ (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧)))) |
4 | 3 | simplbi 499 | 1 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 Mgmcmgm 18373 Smgrpcsgrp 18423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-sgrp 18424 |
This theorem is referenced by: mndmgm 18441 gsumsgrpccat 18527 sgrpssmgm 18621 dfgrp2 18653 dfgrp3e 18724 mulgnndir 18781 mulgnnass 18787 rngcl 45685 isrnghmmul 45695 idrnghm 45710 c0rnghm 45715 |
Copyright terms: Public domain | W3C validator |