|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprid | Structured version Visualization version GIF version | ||
| Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) | 
| Ref | Expression | 
|---|---|
| sprid | ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexv 3508 | . . 3 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}) | |
| 2 | rexv 3508 | . . . 4 ⊢ (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏}) | |
| 3 | 2 | exbii 1847 | . . 3 ⊢ (∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) | 
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) | 
| 5 | 4 | abbii 2808 | 1 ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ∃wex 1778 {cab 2713 ∃wrex 3069 Vcvv 3479 {cpr 4627 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-v 3481 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |