| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sprid | Structured version Visualization version GIF version | ||
| Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| sprid | ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexv 3493 | . . 3 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}) | |
| 2 | rexv 3493 | . . . 4 ⊢ (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏}) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
| 4 | 1, 3 | bitri 275 | . 2 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
| 5 | 4 | abbii 2803 | 1 ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2714 ∃wrex 3061 Vcvv 3464 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |