Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprid Structured version   Visualization version   GIF version

Theorem sprid 44034
 Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprid {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}

Proof of Theorem sprid
StepHypRef Expression
1 rexv 3467 . . 3 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏})
2 rexv 3467 . . . 4 (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏})
32exbii 1849 . . 3 (∃𝑎𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
41, 3bitri 278 . 2 (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏})
54abbii 2863 1 {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑏 𝑝 = {𝑎, 𝑏}}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ∃wex 1781  {cab 2776  ∃wrex 3107  Vcvv 3441  {cpr 4527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rex 3112  df-v 3443 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator