Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprid | Structured version Visualization version GIF version |
Description: Two identical representations of the class of all unordered pairs. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprid | ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexv 3433 | . . 3 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}) | |
2 | rexv 3433 | . . . 4 ⊢ (∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 𝑝 = {𝑎, 𝑏}) | |
3 | 2 | exbii 1855 | . . 3 ⊢ (∃𝑎∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
4 | 1, 3 | bitri 278 | . 2 ⊢ (∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}) |
5 | 4 | abbii 2808 | 1 ⊢ {𝑝 ∣ ∃𝑎 ∈ V ∃𝑏 ∈ V 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎∃𝑏 𝑝 = {𝑎, 𝑏}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∃wex 1787 {cab 2714 ∃wrex 3062 Vcvv 3408 {cpr 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3067 df-v 3410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |