MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexv Structured version   Visualization version   GIF version

Theorem rexv 3466
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 3072 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3445 . . . 4 𝑥 ∈ V
32biantrur 531 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43exbii 1849 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 277 1 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1780  wcel 2105  wrex 3071  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rex 3072  df-v 3443
This theorem is referenced by:  spesbc  3825  exopxfr  5773  elres  5950  elid  6125  dfco2  6171  dfco2a  6172  dffv2  6903  abnex  7649  finacn  9886  ac6s2  10322  ptcmplem3  23288  ustn0  23455  hlimeui  29738  rexcom4f  30955  isrnsiga  32221  prdstotbnd  36024  ac6s3f  36401  moxfr  40730  eldioph2b  40801  kelac1  41105  cbvexsv  42401  sprid  45191
  Copyright terms: Public domain W3C validator