MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexv Structured version   Visualization version   GIF version

Theorem rexv 3475
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 3054 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3451 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43exbii 1848 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 278 1 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  wrex 3053  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3449
This theorem is referenced by:  spesbc  3845  exopxfr  5807  elres  5991  elid  6172  dfco2  6218  dfco2a  6219  dffv2  6956  abnex  7733  finacn  10003  ac6s2  10439  ptcmplem3  23941  ustn0  24108  hlimeui  31169  rexcom4f  32397  isrnsiga  34103  onvf1odlem1  35090  prdstotbnd  37788  ac6s3f  38165  moxfr  42680  eldioph2b  42751  kelac1  43052  cbvexsv  44537  sprid  47472
  Copyright terms: Public domain W3C validator