Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3437 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 531 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | exbii 1851 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2107 ∃wrex 3066 Vcvv 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rex 3071 df-v 3435 |
This theorem is referenced by: spesbc 3816 exopxfr 5755 elres 5933 elid 6107 dfco2 6153 dfco2a 6154 dffv2 6872 abnex 7616 finacn 9815 ac6s2 10251 ptcmplem3 23214 ustn0 23381 hlimeui 29611 rexcom4f 30828 isrnsiga 32090 prdstotbnd 35961 ac6s3f 36338 moxfr 40521 eldioph2b 40592 kelac1 40895 cbvexsv 42174 sprid 44937 |
Copyright terms: Public domain | W3C validator |