Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3445 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 531 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ∃wrex 3071 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-v 3443 |
This theorem is referenced by: spesbc 3825 exopxfr 5773 elres 5950 elid 6125 dfco2 6171 dfco2a 6172 dffv2 6903 abnex 7649 finacn 9886 ac6s2 10322 ptcmplem3 23288 ustn0 23455 hlimeui 29738 rexcom4f 30955 isrnsiga 32221 prdstotbnd 36024 ac6s3f 36401 moxfr 40730 eldioph2b 40801 kelac1 41105 cbvexsv 42401 sprid 45191 |
Copyright terms: Public domain | W3C validator |