| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | exbii 1848 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3440 |
| This theorem is referenced by: spesbc 3836 exopxfr 5790 elres 5975 elid 6152 dfco2 6198 dfco2a 6199 dffv2 6922 abnex 7697 finacn 9963 ac6s2 10399 ptcmplem3 23957 ustn0 24124 hlimeui 31202 rexcom4f 32430 isrnsiga 34082 onvf1odlem1 35078 prdstotbnd 37776 ac6s3f 38153 moxfr 42668 eldioph2b 42739 kelac1 43039 cbvexsv 44524 sprid 47462 |
| Copyright terms: Public domain | W3C validator |