MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexv Structured version   Visualization version   GIF version

Theorem rexv 3464
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 3057 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3440 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43exbii 1849 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 278 1 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2111  wrex 3056  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-v 3438
This theorem is referenced by:  spesbc  3833  exopxfr  5783  elres  5969  elid  6146  dfco2  6192  dfco2a  6193  dffv2  6917  abnex  7690  finacn  9941  ac6s2  10377  ptcmplem3  23970  ustn0  24137  hlimeui  31218  rexcom4f  32445  isrnsiga  34124  onvf1odlem1  35145  prdstotbnd  37840  ac6s3f  38217  moxfr  42731  eldioph2b  42802  kelac1  43102  cbvexsv  44586  sprid  47511
  Copyright terms: Public domain W3C validator