| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | exbii 1849 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-v 3439 |
| This theorem is referenced by: spesbc 3829 exopxfr 5789 elres 5975 elid 6153 dfco2 6199 dfco2a 6200 dffv2 6925 abnex 7698 finacn 9950 ac6s2 10386 ptcmplem3 23972 ustn0 24139 hlimeui 31224 rexcom4f 32451 isrnsiga 34149 onvf1odlem1 35170 prdstotbnd 37857 ac6s3f 38234 moxfr 42812 eldioph2b 42883 kelac1 43183 cbvexsv 44667 sprid 47601 |
| Copyright terms: Public domain | W3C validator |