| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexv | Structured version Visualization version GIF version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| rexv | ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 3468 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | exbii 1848 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 |
| This theorem is referenced by: spesbc 3862 exopxfr 5828 elres 6012 elid 6193 dfco2 6239 dfco2a 6240 dffv2 6979 abnex 7756 finacn 10069 ac6s2 10505 ptcmplem3 23997 ustn0 24164 hlimeui 31226 rexcom4f 32454 isrnsiga 34149 prdstotbnd 37823 ac6s3f 38200 moxfr 42682 eldioph2b 42753 kelac1 43054 cbvexsv 44539 sprid 47455 |
| Copyright terms: Public domain | W3C validator |